Skip to main content
Log in

Why allanite may swindle about its true age

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Allanite from the Tertiary Rieserferner pluton (Austrian Alps) is texturally and chemically heterogeneous. Continuous covariation trends reflect coupled substitution of Ca+Al vs. Fe+REE+Th in allanite, whereas systematic variations in La/Nd demonstrate the increasingly stronger depletion of LREE in the melt during its crystallization. Allanite samples (corrected for 206Pbexcess) from two rocks scatter in the concordia diagram and define discordias from 31.8±0.4 Ma and 32.2±0.4 Ma to ca. 540 Ma. The apparent inheritance does not originate from the inclusion of older allanite or a high-μ phase, such as monazite, xenotime, or zircon, but from the incorporation of radiogenic Pb originating from a precursor. Since allanite requires a high enrichment of Th, (U), and LREE, it may form at the expense of a Th-LREE-rich precursor in metamorphic rocks or where such a phase had dissolved in melts. Likely precursors acquire with time radiogenic Pb isotopic compositions. This Pb, if incorporated in the product mineral, may give the illusion of inheritance. The allanite samples from the Rieserferner pluton show a tendency from high Th/Ucalc (30–50) in samples with an Alpine age to low Th/Ucalc (4–12) in samples with distinct inheritance. This relation between extent of inheritance and apparent Th/Ucalc indicates a lower Th/Ucalc for a possible precursor, falling into the Th/U range commonly encountered for monazite. Precursor monazite would have originated from assimilated Palaeozoic rocks and give rise to localized enrichments of Th and LREE in the melt, thus eventually enabling the growth of allanite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3. a
Fig. 4. a, b
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Barth S, Oberli F, Meier M (1989) U-Th-Pb systematics of morphologically characterized zircon and allanite: a high-resolution isotopic study of the Alpine Rensen pluton (northern Italy). Earth Planet Sci Lett 95:235–254

    Article  CAS  Google Scholar 

  • Barth S, Oberli F, Meier M (1994) Th-Pb versus U-Pb isotope systematics in allanite from co-genetic rhyolite and granodiorite: implications for geochronology. Earth Planet Sci Lett 124:149–159

    Article  CAS  Google Scholar 

  • Bellieni G (1978) Caratteri geochimici del massicco granodioritico tonalitico delle Vedrette di Ries (Rieserferner)-Alto Adige Orientale. Rend Soc Ital Min Petrol 34:527–548

    CAS  Google Scholar 

  • Bellieni G, Cavazzini G, Fioretti A, Peccerillo A, Poli G, Zantedeschi P (1984) Petrology and geochemistry of microgranular mafic enclaves from the Vendrette di Ries plutonic complex (Eastern Alps). Periodico Miner 58:45–65

    Google Scholar 

  • Bellieni G, Chiaromonti PC, Visona D (1976) Contributo alla conscenza del plutone delle Vedrette di Ries (Alpe Orientali). Boll Soc Geol Ital 95:351–370

    CAS  Google Scholar 

  • Bellieni G, Peccerillo A, Poli G (1981) The Vedrette di Ries (Riesrferner) plutonic complex; petrological and geochemical data bearing on its genesis. Contrib Mineral Petrol 78:145–156

    Google Scholar 

  • Bögel H, Schmidt K (1976) Kleine Geologie der Ostalpen. Ott Verlag, Thun, 231 pp

  • Borsi S, Del Moro A, Sassi FP, Zirpoli G (1979) On the age of the Vedrette di Ries (Rieserferner) massif and its geodynamic significance. Geol Rundsch 68:41–60

    Google Scholar 

  • Cesare B (1992) Metamorfismo di contatto di rocce pelitiche nell’ aureola di Vedrette di Ries (Alps Orientali, Italy). Atti Ticinensi Scei Terra 35:1-7

    Google Scholar 

  • Davis DW, Schandl ES, Wasteneys HA (1994) U-Pb dating of mineral alteration in halos of Superior Province massive sulfide deposits: syngenesis versus metamorphism. Contrib Mineral Petrol 115:427–437

    CAS  Google Scholar 

  • Del Moro A, Ferrara G, Tonarini S, Callegari E (1983) Rb/Sr and K/Ar chronology of Adamello granitoids, Southern Alps. Mem Soc Geol Ital 26:285–299

    Google Scholar 

  • Ferry JM (2000) Patterns of mineral occurrence in metamorphic rocks. Am Mineral 85:1573–1588

    CAS  Google Scholar 

  • Finger F, Broska I, Roberts MP, Schermaier A (1998) Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the Eastern Alps. Am Mineral 83:248–258

    CAS  Google Scholar 

  • Förster H-J (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part I: The monazite-(Ce)-brabantite solid solution series. Am Mineral 83:259–272

    Google Scholar 

  • Gerstenberger H, Haase G (1997) A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem Geol 136:309–312

    CAS  Google Scholar 

  • Hansmann W, Oberli F (1991) Zircon inheritance in an igneous rock suite: Implications for the petrogenesis of the southern Adamello batolith (Italian Alps). Contrib Mineral Petrol 107:501–518

    Google Scholar 

  • Hawkins DP, Bowring SA (1997) U-Pb systematics of monazite and xenotime: case studies from the Paleoproterozoic of the Grand Canyon, Arizona. Contrib Mineral Petrol 127:87–103

    Article  CAS  Google Scholar 

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C4:1889–1906

    Google Scholar 

  • Lanzirotti A, Hanson GN (1995) U-Pb dating of major and accessory minerals formed during metamorphism and deformation of metapelites. Geochim Cosmochim Acta 59:2513–2526

    Article  Google Scholar 

  • Lanzirotti A, Hanson GN (1996) Geochronology and geochemistry of multiple generations of monazite from the Wepawaug Schist, Connecticut, USA: implications for monazite stability in metamorphic rocks. Contrib Mineral Petrol 125:332–340

    Article  CAS  Google Scholar 

  • Mager M (1985) Geologische und petrographische Untersuchungen am Südrand des Rieserferner Plutons (Südtirol) unter Berücksichtigung des Intrusionsmechanismus. PhD Thesis, University Erlangen-Nürnberg

  • Manhès G, Minster JF, Allègre CJ (1978) Comparative uranium-thorium-lead and rubidium-strontium study of the Saint Séverin amphoterite: consequences for early solar system chronology. Earth Planet Sci Lett 39:14–24

    Article  Google Scholar 

  • Müller W, Mancktelow NS, Meier M (2000) Rb-Sr. Microchrons of synkinematic mica in mylonites: an example from the DAV-fault of the Eastern Alps. Earth Planet Sci Lett 180:385–397

    Article  Google Scholar 

  • Pan Y (1997) Zircon- and monazite-forming metamorphic reactions at Manitowadge, Ontario. Can Mineral 35:105–118

    CAS  Google Scholar 

  • Poitrasson F (2002) In situ investigation of allanite hydrothermal alteration: examples from calc-alkaline and anorogenic granites of Corsica (southeast France). Contrib Mineral Petrol 142: 485–500

    CAS  Google Scholar 

  • Romer RL (2001) Lead incorporation during crystal growth and the misinterpretation of geochronological data from low-238U/204Pb metamorphic minerals. Terra Nova 13:258–263

    Article  CAS  Google Scholar 

  • Romer RL, Rötzler J (2001) P–T-t evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany. Part II: Geochronology. J Petrol 42:2015–2032

    Article  CAS  Google Scholar 

  • Romer RL, Rötzler J (2003) Effect of metamorphic reaction history on the U-Pb dating of titanite. Geol Soc Lond Spec Publ 220:147–158

  • Romer RL, Schärer U, Steck A (1996) Alpine and pre-Alpine magmatism in the root-zone of the western Central Alps. Contrib Mineral Petrol 123:138–158

    Article  CAS  Google Scholar 

  • Rosenberg C, Berger A, Schmid SM (1995) Observations from the floor of a granitoid pluton: inferences on the driving force of final emplacement. Geology 23:443–446

    Article  Google Scholar 

  • Schärer U (1984) The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204

    Article  Google Scholar 

  • Schärer U, Allègre CJ (1983) The Palung granite (Himalaya); high-resolution U-Pb systematics in zircon and monazite. Earth Planet Sci Lett 63:423–432

    Article  Google Scholar 

  • Schmid SM, Aebli HR, Heller F, Zingg A (1989) The role of the Periadriatic Line in the tectonic evolution of the Alps. In: Coward MP, Dietrich D, Park RG (eds) Alpine tectonics. Geol Soc Lond Spec Publ 45:153–171

    Google Scholar 

  • Schönhofer R (1999) Das ostalpine Altkristallin der westlichen Lasörlinggruppe (Osttirol, Österreich): Kartierung, Stoffbestand und tektonometamorphe Entwicklung. Erlanger Geol Abh 130:1-128

    Google Scholar 

  • Schulz B, Nollau G, Heinisch H, Godizart G (1993) Austro-Alpine basement complex to the south of the Tauern Window. In: von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology of the Alps. Springer, Berlin Heidelberg New York, pp 495–514

  • Schulz B, Siegesmund S, Steenken A, Schönhofer R, Heinrichs T (2001) Geologie des Altkristallins südlich des Tauernfensters zwischen Virgen und Pustertal. Z Dtsch Geol Ges 152:261–307

    Google Scholar 

  • Steenken A, Siegesmund S, Heinrichs T (2000) The emplacement of the Rieserferner pluton (Eastern Alps, Tyrol): Constraints from field observations, magnetic fabrics and microstructures. J Struct Geol 22:1855–1873

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission of geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    CAS  Google Scholar 

  • Tilton GR (1973) Isotopic lead ages of chondritic meteorites. Earth Planet Sci Lett 19:321–329

    CAS  Google Scholar 

  • von Blanckenburg F (1992) Combined high-precision chronometry and geochemical tracing using accessory minerals: applied to the Central-Alpine Bergell intrusion (central Europe). Chem Geol 100:19–40.

    Article  Google Scholar 

  • von Blanckenburg F, Davis JH (1996) Feasibility of double slab breakoff (Cretaceous and Tertiary) during the Alpine convergence. Eclogae Geol Helv 89:111–127

    Google Scholar 

  • von Raumer JF, Neubauer F (1993) Late Precambrian and Palaeozoic evolution of the Alpine basement—an overview. In: von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology of the Alps. Springer, Berlin Heidelberg New York, pp 625-639

  • Wang J, Tatsumoto M, Li X, Premo WR, Chao ECT (1994) A precise 232Th-208Pb chronology of fine-grained monazite: Age of Bayan Obo REE-Fe-Nb ore deposit, China. Geochim Cosmochim Acta 58:3155–3169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sten Littmann (GFZ Potsdam) for his work with the electron-microprobe, Andre Steenken (Göttingen) for the mineral separation, and Catrin Schulz (GFZ Potsdam) for help with the sample preparation in the clean laboratory. Fritz Finger (Salzburg) and Felix Oberli (ETH Zürich) provided detailed and constructive reviews. We gratefully appreciate their efforts that eventually resulted in a more focused presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf L. Romer.

Additional information

Editorial responsibility: J. Hoefs

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romer, R.L., Siegesmund, S. Why allanite may swindle about its true age. Contrib Mineral Petrol 146, 297–307 (2003). https://doi.org/10.1007/s00410-003-0494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0494-6

Keywords

Navigation