Skip to main content

Advertisement

Log in

Laboratory Cross-Contamination of Mycobacterium tuberculosis: A Systematic Review and Meta-analysis

  • TUBERCULOSIS
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Microbiological cultures are the mainstay of the diagnosis of tuberculosis (TB). False-positive TB results lead to significant unnecessary therapeutic and economic burden and are frequently caused by laboratory cross-contamination. The aim of this meta-analysis was to quantify the prevalence of laboratory cross-contamination.

Methods

Through a systematic review of five electronic databases, we identified studies reporting rates of laboratory cross-contamination, confirmed by molecular techniques in TB cultures. We evaluated the quality of the identified studies using the National Institute of Health (NIH) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies, and conducted a meta-analysis using standard methodology recommended by the Cochrane Collaboration.

Results

Based on 31 eligible studies evaluating 29,839 TB cultures, we found that 2% (95% confidence intervals [CI] 1–2%) of all positive TB cultures represent false-positive results secondary to laboratory cross-contamination. More importantly, we evaluated the rate of laboratory cross-contamination in cases where a single-positive TB culture was available in addition to at least one negative TB culture, and we found a rate of 15% (95% CI 6–33%). Moreover, 9.2% (91/990) of all patients with a preliminary diagnosis of TB had false-positive results and received unnecessary and potentially harmful treatments.

Conclusions

Our results highlight a remarkably high prevalence of false-positive TB results as a result of laboratory cross-contamination, especially in single-positive TB cultures, leading to the administration of unnecessary, harmful treatments. The need for the adoption of strict technical standards for mycobacterial cultures cannot be overstated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HIV:

Human immunodeficiency virus

MDR-TB:

Multidrug-resistant tuberculosis

NIH:

National Institute of Health

PRISMA:

Preferred reporting items for systematic reviews and meta-analyses

TB:

Tuberculosis

WHO:

World Health Organization

References

  1. Rashedi J, Mahdavi Poor B, Rafi A, Asgharzadeh M, Abdolalizadeh J, Moaddab SR (2015) Multidrug-resistant tuberculosis in north-west of Iran and Republic of Azerbaijan: a major public health concern for Iranian people. J Res Health Sci 15(2):101–103

    PubMed  Google Scholar 

  2. Organization WHO (2018) Global tuberculosis report 2018

  3. de Boer AS, Blommerde B, de Haas PE et al (2002) False-positive Mycobacterium tuberculosis cultures in 44 laboratories in The Netherlands (1993 to 2000): incidence, risk factors, and consequences. J Clin Microbiol 40(11):4004–4009

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ramos MC, Soini H, Roscanni GC, Jaques M, Villares MC, Musser JM (1999) Extensive cross-contamination of specimens with Mycobacterium tuberculosis in a reference laboratory. J Clin Microbiol 37(4):916–919

    Google Scholar 

  5. Burman WJ, Reves RR (2000) Review of false-positive cultures for Mycobacterium tuberculosis and recommendations for avoiding unnecessary treatment. Clin Infect Dis 31(6):1390–1395

    Article  PubMed  CAS  Google Scholar 

  6. Martinez M, Viedma D, Alonso M et al (2006) Impact of laboratory cross-contamination on molecular epidemiology studies of tuberculosis. J Clin Microbiol 44(8):2967–2969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Small PM, McClenny NB, Singh SP, Schoolnik GK, Tompkins LS, Mickelsen PA (1993) Molecular strain typing of Mycobacterium tuberculosis to confirm cross-contamination in the mycobacteriology laboratory and modification of procedures to minimize occurrence of false-positive cultures. J Clin Microbiol 31(7):1677–1682

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Asgharzadeh M, Shahbabian K, Majidi J et al (2006) IS6110 restriction fragment length polymorphism typing of Mycobacterium tuberculosis isolates from East Azerbaijan Province of Iran. Mem Inst Oswaldo Cruz 101(5):517–521

    Article  PubMed  CAS  Google Scholar 

  9. van Embden JD, Cave MD, Crawford JT et al (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31(2):406–409

    PubMed  PubMed Central  Google Scholar 

  10. Gutierrez M, Vincent V, Aubert D et al (1998) Molecular fingerprinting of Mycobacterium tuberculosisand risk factors for tuberculosis transmission in Paris, France, and surrounding area. J Clin Microbiol 36(2):486–492

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Breese PE, Burman WJ, Hildred M et al (2001) The effect of changes in laboratory practices on the rate of false-positive cultures for Mycobacterium tuberculosis. Arch Pathol Lab Med 125(9):1213–1216

    PubMed  CAS  Google Scholar 

  12. Lee MR, Chung KP, Chen WT et al (2012) Epidemiologic surveillance to detect false-positive Mycobacterium tuberculosis cultures. Diagn Microbiol Infect Dis 73(4):343–349

    Article  PubMed  CAS  Google Scholar 

  13. Burman WJ, Stone BL, Reves RR et al (1997) The incidence of false-positive cultures for Mycobacterium tuberculosis. Am J Respir Crit Care Med 155(1):321–326

    Article  PubMed  CAS  Google Scholar 

  14. Bauer J, Thomsen VO, Poulsen S et al (1997) False-positive results from cultures of Mycobacterium tuberculosis due to laboratory cross-contamination confirmed by restriction fragment length polymporphism. J Clin Microbiol 35(4):988–991

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Behr MA, Warren SA, Salamon H et al (1999) Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet 353:444

    Article  PubMed  CAS  Google Scholar 

  16. Dahle UR, Sandven P, Heldal E, Caugant DA (2003) Continued low rates of transmission of Mycobacterium tuberculosis in Norway. J Clin Microbiol 41(7):2968–2973

    Article  PubMed  PubMed Central  Google Scholar 

  17. Braden CR, Templeton GL, Stead WW et al (1997) Retrospective detection of laboratory cross-contamination of Mycobacterium tuberculosis cultures with use of DNA fingerprint analysis. Clin Infect Dis 24:35–40

    Article  PubMed  CAS  Google Scholar 

  18. Dahle UR, Sandven P, Heldal E et al (2001) Molecular epidemiology of Mycobacterium tuberculosis in Norway. J Clin Microbiol 29(5):1802–1807

    Article  Google Scholar 

  19. Fujikane T, Fujiuchi S, Yamazaki Y et al (2004) Molecular epidemiology of tuberculosis in the north Hokkaido district of Japan. Int J Tuberc Lung Dis 8(1):39–44

    PubMed  CAS  Google Scholar 

  20. Hernandez-Garduno E, Cook V, Kunimoto D, Elwood RK, Black WA, FitzGerald JM (2004) Transmission of tuberculosis from smear negative patients: a molecular epidemiology study. Thorax 59(4):286–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Asgharzadeh M, Kafil HS, Roudsary AA, Hanifi GR (2011) Tuberculosis transmission in Northwest of Iran: using MIRU-VNTR, ETR-VNTR and IS6110-RFLP methods. Infect Genet Evol 11(1):124–131

    Article  PubMed  Google Scholar 

  22. Ribeiro FK, Lemos EM, Hadad DJ et al (2009) Evaluation of low-colony-number counts of Mycobacterium tuberculosis on solid media as a microbiological marker of cross-contamination. J Clin Microbiol 47(6):1950–1952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Allix-Beguec C, Fauville-Dufaux M, Supply P (2008) Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 46(4):1398–1406

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yan JJ, Jou R, Ko WC, Wu JJ, Yang ML, Chen HM (2005) The use of variable-number tandem-repeat mycobacterial interspersed repetitive unit typing to identify laboratory cross-contamination with Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 52(1):21–28

    Article  PubMed  CAS  Google Scholar 

  25. Drobniewski FA, Gibson A, Ruddy M et al (2003) Evaluation and utilization as a public health tool of a national molecular epidemiological Tuberculosis outbreak database within the United Kingdom from 1997 to 2001. J Clin Microbiol 41(5):1861–1868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gascoyne-Binzi DM, Barlow REL, Frothingham R et al (2001) Rapid identification of laboratory contamination with Mycobacterium tuberculosis using variable number tandem repeat analysis. J Clin Microbiol 39(1):69–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Globan M, Lavender C, Leslie D et al (2016) Molecular epidemiology of tuberculosis in Victoria, Australia, reveals low level of transmission. Int J Tuberc Lung Dis 20(5):652–658

    Article  PubMed  CAS  Google Scholar 

  28. Glynn JR, Yates MD, Crampin AC et al (2004) DNA fingerprint changes in Tuberculosis: reinfection, evolution or laboratory error? J Infect Dis 190:1158–1166

    Article  PubMed  Google Scholar 

  29. Godfrey-FAussett P, Sonnenberg P, Shearer SC et al (2000) Tuberculosis control and molecular epidemiology in a South African gold-mining community. Lancet 356:1066

    Article  PubMed  CAS  Google Scholar 

  30. Hayward AC, Goss S, Drobniewski F et al (2002) The molecular epidemiology of tuberculosis in inner London. Epidemiol Infect 128:175–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jasmer RM, Roemer M, Hamilton J et al (2002) A prospective multicenter study of laboratory cross0contamination of Mycobacterium tuberculosis cultures. Emerg Infect Dis 8(11):1260–1263

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jasmer RM, Bozeman L, Schwartzman K et al (2004) Recurrent tuberculosis in United States and Canada: relapse or reinfection? Am J Respir Crit Care Med 170(12):1360–1366

    Article  PubMed  Google Scholar 

  33. Lai CC, Tan CK, Lin SH et al (2010) Molecular evidence of false-positive cultures of Mycobacterium tuberculosis in a Taiwanese hospital with a high incidence of TB. Chest 137(5):1065–1070

    Article  PubMed  Google Scholar 

  34. McConkey SJ, Williams M, Weiss D et al (2002) Prospective use of molecular typing of Mycobacterium tuberculosis by use of restriction fragment-length polymporphism in a public tuberculosis-control program. Clin Infect Dis 34:612–619

    Article  PubMed  Google Scholar 

  35. Nitta AT, Knowles LA, Kim J et al (2002) Limited transmission of multidrug-resistant Tuberculosis despite a high proportion of infectious cases in Los Angeles County, California. Am J Respir Crit Care Med 165:812–817

    Article  PubMed  Google Scholar 

  36. Maguire H, Dale JW, McHugh TD et al (2002) Molecular epidemiology of tuberculosis in London 1995-7 showing low rate of active transmission. Thorax 57:617–622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ruddy M, McHugh TD, Dale JW et al (2002) Estimation of the rate of unrecognized cross-contamination with Mycobacterium tuberculosis in London Microbiology Laboratories. J Clin Microbiol 40(11):4100–4104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Thumamo BP, Asuquo AE, Abia-Bassey LN et al (2012) Molecular epidemiology and genetic diversity of Mycobacterium tuberculosis complex in the Cross River State, Nigeria. Infect Genet Evol 12(4):671–677

    Article  PubMed  Google Scholar 

  39. Carroll NM, Richardson M, Engelke E, de Kock M, Lombard C, van Helden PD (2002) Reduction of the rate of false-positive cultures of Mycobacterium tuberculosis in a laboratory with a high culture positivity rate. Clin Chem Lab Med 40(9):888–892

    Article  PubMed  CAS  Google Scholar 

  40. Lewinsohn DM, Leonard MK, LoBue PA et al (2017) Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: diagnosis of tuberculosis in adults and Children. Clin Infect Dis 64(2):111–115

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jonsson J, Hoffner S, Berggren I et al (2014) Comparison between RFLP and MIRU-VNTR genotyping of Mycobacterium tuberculosis strains isolated in Stockholm 2009 to 2011. PLoS ONE 9(4):e95159

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kamerbeek J, Schouls L, Kolk A et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35(4):907–914

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Daum LT, Konstantynovska OS, Solodiankin OS et al (2018) Next-generation sequencing for characterizing drug resistance-conferring Mycobacterium tuberculosis Genes from Clinical Isolates in the Ukraine. J Clin Microbiol 56(6):e00009-18

    Article  PubMed  PubMed Central  Google Scholar 

  44. Northrup JM, Miller AC, Nardell E et al (2002) Estimated costs of false laboratory diagnoses of tuberculosis in three patients. Emerg Infect Dis 8(11):1264–1270

    Article  PubMed  PubMed Central  Google Scholar 

  45. Larson JL, Lambert L, Stricof RL, Driscoll J, McGarry MA, Ridzon R (2003) Potential nosocomial exposure to Mycobacterium tuberculosis from a bronchoscope. Infect Control Hosp Epidemiol 24(11):825–830

    Article  PubMed  Google Scholar 

  46. Asgharzadeh M, Khakpour M, Salehi TZ, Kafil HS (2007) Use of mycobacterial interspersed repetitive unit-variable-number tandem repeat typing to study Mycobacterium tuberculosis isolates from East Azarbaijan province of Iran. Pak J Biol Sci 10(21):3769–3777

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Iranian National Sciences Foundation (Grant No: 843599) and Tabriz University of Medical Sciences (Grant No: 37876). AGM is supported by the National Institute for Health Research Manchester Biomedical Research Centre (NIHR Manchester BRC). Dr Aleksandra Barac’s scientific work and research is supported by the Project of Ministry of Education, Science and Technology of the Republic of Serbia (No. III45005).

Author information

Authors and Affiliations

Authors

Contributions

MP, HK, MTR, EA, AB, JR, BM, HSK, AGM, and MA carried out the systematic review and meta-analyses and drafted the manuscript. AGM provided methodological expertise. AS, KHA, MA, and EA participated in the design of the study and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ehsan Ahmadpour or Alexander G. Mathioudakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest relevant to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

408_2019_241_MOESM1_ESM.docx

Causes of M. tuberculosis cross-contamination that were identified in the included studies. Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barac, A., Karimzadeh-Esfahani, H., Pourostadi, M. et al. Laboratory Cross-Contamination of Mycobacterium tuberculosis: A Systematic Review and Meta-analysis. Lung 197, 651–661 (2019). https://doi.org/10.1007/s00408-019-00241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-019-00241-4

Keywords

Navigation