Skip to main content

Advertisement

Log in

Total IgM and Anti-Phosphatidylcholine IgM Antibody Secretion Continue After Clearance of Mycobacterium bovis Bacillus Calmette-Guerin Pleural Infection

  • Published:
Lung Aims and scope Submit manuscript

Abstract

The cellular immune response to Mycobacterium tuberculosis infection has been well characterized, while the humoral antibody response remains underexplored. We aimed to examine the total and anti-phospholipid IgM levels in the pleural lavage from mice with Mycobacterium bovis BCG extrapulmonary infection. We found that the levels of total and anti-phosphatidylcholine IgM antibodies remained significantly higher in infected mice as compared to non-infected mice up to day 90 after BCG infection, while the anti-cardiolipin IgM antibody levels decreased with bacteria clearance. Our findings suggest that IgM antibodies are secreted and their composition vary during early and late immune response to BCG pleurisy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. WHO (2016) The Global Tuberculosis Report 2015. Geneve, Switzerland

    Google Scholar 

  2. Wallis RS, Kim P, Cole S, Hanna D, Andrade BB, Maeurer M, Schito M, Zumla A (2013) Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infectious Dis 13(4):362–372. doi:10.1016/s1473-3099(13)70034-3

    Article  Google Scholar 

  3. Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, Kaneda Y, Yoshida S, Nishida Y, Nakatani H, Takao K, Kishigami C, Inoue Y, Matsumoto M, McMurray DN, Dela Cruz EC, Tan EV, Abalos RM, Burgos JA, Saunderson P, Sakatani M (2009) Novel prophylactic and therapeutic vaccine against tuberculosis. Vaccine 27(25–26):3267–3270. doi:10.1016/j.vaccine.2009.01.064

    Article  CAS  PubMed  Google Scholar 

  4. Kita Y, Okada M, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, Kaneda Y, Yoshida S, Nishida Y, Nakatani H, Takao K, Kishigami C, Nishimatsu S, Sekine Y, Takamori Y, McMurray DN, De la Cruz EC, Tan EV, Abalos RM, Burgos JA, Saunderson P, Sakatani M (2011) Development of therapeutic and prophylactic vaccine against Tuberculosis using monkey and transgenic mice models. Hum Vaccin 7(Suppl):108–114

    Article  CAS  PubMed  Google Scholar 

  5. Keicho N (2010) Biomarkers to assess different aspects of tuberculosis–from development to relapse. Kekkaku 85(11):823–828

    PubMed  Google Scholar 

  6. Fukui M, Shinjo K, Umemura M, Shigeno S, Harakuni T, Arakawa T, Matsuzaki G (2015) Enhanced effect of BCG vaccine against pulmonary Mycobacterium tuberculosis infection in mice with lung Th17 response to mycobacterial heparin-binding hemagglutinin adhesin antigen. Microbiol Immunol 59(12):735–743. doi:10.1111/1348-0421.12340

    Article  CAS  PubMed  Google Scholar 

  7. Ordway D, Palanisamy G, Henao-Tamayo M, Smith EE, Shanley C, Orme IM, Basaraba RJ (2007) The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J Immunol 179(4):2532–2541

    Article  CAS  PubMed  Google Scholar 

  8. Kahnert A, Hopken UE, Stein M, Bandermann S, Lipp M, Kaufmann SH (2007) Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J Infectious Dis 195(1):46–54. doi:10.1086/508894

    Article  CAS  Google Scholar 

  9. Sugawara I, Yamada H, Mizuno S (2004) Pathological and immunological profiles of rat tuberculosis. Int J Exp Pathol 85(3):125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sato K, Shimizu T, Sano C, Tomioka H (2005) Effects of type II alveolar epithelial cells on T cell mitogenic responses to concanavalin A and purified protein derivatives. Microbiol Immunol 49(10):885–890

    Article  CAS  PubMed  Google Scholar 

  11. Flynn JL, Chan J, Lin PL (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4(3):271–278. doi:10.1038/mi.2011.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Torrado E, Fountain JJ, Robinson RT, Martino CA, Pearl JE, Rangel-Moreno J, Tighe M, Dunn R, Cooper AM (2013) Differential and site specific impact of B cells in the protective immune response to Mycobacterium tuberculosis in the mouse. PLoS ONE 8(4):e61681. doi:10.1371/journal.pone.0061681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Momotani E, Kubo M, Ishikawa Y, Yoshino T (1989) Immunohistochemical localization of immunoglobulins in bovine granulomatous lesions. J Comp Pathol 100(2):129–136

    Article  CAS  PubMed  Google Scholar 

  14. Phuah JY, Mattila JT, Lin PL, Flynn JL (2012) Activated B cells in the granulomas of nonhuman primates infected with Mycobacterium tuberculosis. Am J Pathol 181(2):508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Linge I, Dyatlov A, Kondratieva E, Avdienko V, Apt A, Kondratieva T (2017) B-lymphocytes forming follicle-like structures in the lung tissue of tuberculosis-infected mice: dynamics, phenotypes and functional activity. Tuberculosis 102:16–23. doi:10.1016/j.tube.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  16. Goodridge A, Zhang T, Miyata T, Lu S, Riley LW (2014) Antiphospholipid IgM antibody response in acute and chronic Mycobacterium tuberculosis mouse infection model. Clin Respir J 8(2):137–144. doi:10.1111/crj.12049

    Article  CAS  PubMed  Google Scholar 

  17. Yenson V, Baumgarth N (2014) Purification and immune phenotyping of B-1 cells from body cavities of mice. Methods Mol Biol 1190:17–34. doi:10.1007/978-1-4939-1161-5_2

    Article  CAS  PubMed  Google Scholar 

  18. Dunphy KY, Senaratne RH, Masuzawa M, Kendall LV, Riley LW (2010) Attenuation of Mycobacterium tuberculosis functionally disrupted in a fatty acyl-coenzyme A synthetase gene fadD5. J Infectious Dis 201(8):1232–1239

    Article  CAS  Google Scholar 

  19. Sugawara I, Yamada H, Li C, Mizuno S, Takeuchi O, Akira S (2003) Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol Immunol 47(5):327–336

    Article  CAS  PubMed  Google Scholar 

  20. Takatsu K, Kouro T, Nagai Y (2009) Interleukin 5 in the link between the innate and acquired immune response. Adv Immunol 101:191–236

    Article  CAS  PubMed  Google Scholar 

  21. Morosini M, Meloni F, Uccelli M, Marone Bianco A, Solari N, Fietta AM (2005) Ex vivo evaluation of PPD-specific IFN-gamma or IL-5 secreting cells in the peripheral blood and lungs of patients with tuberculosis. Int J Tuberc Lung Dis 9(7):753–759

    CAS  PubMed  Google Scholar 

  22. Somoskovi A, Zissel G, Zipfel PF, Ziegenhagen MW, Klaucke J, Haas H, Schlaak M, Muller-Quernheim J (1999) Different cytokine patterns correlate with the extension of disease in pulmonary tuberculosis. Eur Cytokine Netw 10(2):135–142

    CAS  PubMed  Google Scholar 

  23. Barnes PF, Lu S, Abrams JS, Wang E, Yamamura M, Modlin RL (1993) Cytokine production at the site of disease in human tuberculosis. Infect Immun 61(8):3482–3489

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Romanowski B, Sutherland R, Fick GH, Mooney D, Love EJ (1991) Serologic response to treatment of infectious syphilis. Ann Intern Med 114(12):1005–1009

    Article  CAS  PubMed  Google Scholar 

  25. Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A (2011) Immunological biomarkers of tuberculosis. Nat Rev Immunol 11(5):343–354. doi:10.1038/nri2960

    Article  CAS  PubMed  Google Scholar 

  26. Walzl G, Ronacher K, Djoba Siawaya JF, Dockrell HM (2008) Biomarkers for TB treatment response: challenges and future strategies. J Infect 57(2):103–109. doi:10.1016/j.jinf.2008.06.007

    Article  PubMed  Google Scholar 

  27. Jacobsen M, Mattow J, Repsilber D, Kaufmann SH (2008) Novel strategies to identify biomarkers in tuberculosis. Biol Chem 389(5):487–495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Fermín Acosta for conducting the morphologic analysis and DNA identification of the Mycobacterium bovis BCG culture. We thank Yisett González for her assistance with the animal experiments at INDICASAT-AIP and specially thank Colleen Goodridge for her critical review of the manuscript and valuable suggestions.

Funding

This study was funded by a Doctoral Fellowship from the Secretaria Nacional de Ciencia Tecnología e Innovación (SENACYT) and the Instituto para la Formación y Aprovechamiento de los Recursos Humanos (IFARHU) (Grant No. IFARHU-270-2012-138). We also received funds from SENACYT (Grant Nos. ITE-11-020, GC-2015-22), as well as from the Sistema Nacional de Investigadores de Panamá (SNI) (Grants Nos. SNI-55-2014, SNI-129-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amador Goodridge.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Ethical approval was obtained from Institutional Animal Care and Use Committee of INDICASAT-AIP. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordoñez, C., Tarajia, M., Rivera, R. et al. Total IgM and Anti-Phosphatidylcholine IgM Antibody Secretion Continue After Clearance of Mycobacterium bovis Bacillus Calmette-Guerin Pleural Infection. Lung 195, 517–521 (2017). https://doi.org/10.1007/s00408-017-0019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-017-0019-0

Keywords

Navigation