Skip to main content
Log in

Emergence of classical trajectories in quantum systems: the cloud chamber problem in the analysis of Mott (1929)

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

We analyze the paper “The wave mechanics of \(\alpha \)-ray tracks” Mott (Proc R Soc Lond A 126:79–84, 1929), published in 1929 by N. F. Mott. In particular, we discuss the theoretical context in which the paper appeared and give a detailed account of the approach used by the author and the main result attained. Moreover, we comment on the relevance of the work not only as far as foundations of Quantum Mechanics are concerned but also as the earliest pioneering contribution in decoherence theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Sir Nevill Francis Mott (30 September 1905 to 8 August 1996) was an English physicist. He won the Nobel Prize for Physics in 1977 for his work on the electronic structure of magnetic and disordered systems. The award was shared with P. W. Anderson and J. H. Van Vleck (for further details see e.g. B. Pippard, Biographical Memoirs of Fellows of the Royal Society, 44, 314–328, 1998).

References

  • Adami, R., R. Figari, D. Finco, and A. Teta. 2006. On the asymptotic dynamics of a quantum system composed by heavy and light particles. Communications in Mathematical Physics 268(3): 819–852.

    Article  MathSciNet  MATH  Google Scholar 

  • Bacciagaluppi, G., and A. Valentini. 2009. Quantum theory at the crossroads: reconsidering the 1927 Solvay conference. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Bohr, N. 1928. The quantum postulate and the recent development of atomic theory. Nature 121: 580–590.

    Article  MATH  Google Scholar 

  • Born, M. 1926. Zur Quantenmechanik der Stossvorgänge. Physikalische Zeitschrift 37: 863–867. (English translation reprinted in: Wheeler J.A., W. Zurek. Quantum theory and measurement. Princeton University Press, 1983).

    Article  MATH  Google Scholar 

  • Born, M., and P. Jordan. 1925. Zur Quantenmechanik. Physikalische Zeitschrift 34: 858. (English translation reprinted in: van der Waerden B.L. Source of quantum mechanics. Dover Publications Inc., 1967).

    Article  MATH  Google Scholar 

  • Carazza, B., and H. Kragh. 2000. Classical behavior of macroscopic bodies from quantum principles: early discussions. Archive for History Exact Sciences 55: 43–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Claverie, P., and G. Jona-Lasinio. 1986. Instability of tunnelling and the concept of molecular structure in quantum mechanics: the case of pyramidal molecules and the enantiomer problem. Physical Review A 33: 2245–2253.

    Article  Google Scholar 

  • Cushing, J.T. 1994. Quantum mechanics, historical contingency and the Copenhagen hegemony. Chicago: The University of Chicago Press.

    MATH  Google Scholar 

  • Darwin, C.G. 1929. A collision problem in the wave mechanics. Proceedings of the Royal Society London A 124: 375–394.

    Article  MATH  Google Scholar 

  • Dell’Antonio, G., R. Figari, and A. Teta. 2008. Joint excitation probability for two harmonic oscillators in dimension one and the Mott problem. Journal of Mathematical Physics 49(4): 042105.

    Article  MathSciNet  Google Scholar 

  • Dell’Antonio, G., R. Figari, and A. Teta. 2010. A time dependent perturbative analysis for a quantum particle in a cloud chamber. Annales Henri Poincare 11(3): 539–564.

    Article  MathSciNet  MATH  Google Scholar 

  • Falkenburg, B. 1996. The analysis of particle tracks: a case for trust in the unity of Physics. Studies in History and Philosophy of Modern Physics 27(3): 337–371.

    Article  Google Scholar 

  • Gamow, G. 1928. Zur quantentheorie des atomkernes. Physikalische Zeitschrift 51: 204.

    Article  MATH  Google Scholar 

  • Giulini, D., E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H.D. Zeh. 1996. Decoherence and the appearance of a classical world in quantum theory. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Grecchi, V., A. Martinez, and A. Sacchetti. 2002. Destruction of the beating effect for a non-linear Schrödinger equation. Communications in Mathematical Physics 227: 191–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Heisenberg, W. 1925. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Physikalische Zeitschrift 33: 879–893. (English translation reprinted in: van der Waerden B.L. Source of quantum mechanics. Dover Publications Inc., 1967).

    Article  MATH  Google Scholar 

  • Heisenberg, W. 1927. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Physikalische Zeitschrift 43: 172–198. (English translation reprinted in: Wheeler J.A. and W. Zurek. Quantum theory and measurement. Princeton University Press, 1983).

  • Heisenberg, W. 1930. The physical principles of the quantum theory. Chicago: The University of Chicago Press.

  • Hornberger, K., and J.E. Sipe. 2003. Collisional decoherence reexamined. Physical Review A 68(012105): 1–16.

    Google Scholar 

  • Jammer, M. 1989. The conceptual development of quantum mechanics, 2nd edn. New York: American Institute of Physics.

  • Joos, E., and H.D. Zeh. 1985. The emergence of classical properties through interaction with the environment. Physikalische Zeitschrift B59: 223–243.

    Google Scholar 

  • Leone, M., and N. Robotti. 2004. A note on the Wilson cloud chamber (1912). European Journal of Physics 25: 781–791.

    Article  Google Scholar 

  • Mott, N.F. 1929. The wave mechanics of \(\alpha \)-ray tracks. Proceedings of the Royal Soceity of London A 126: 79–84. (Reprinted in: Wheeler J.A., W. Zurek. Quantum theory and measurement, Princeton University Press, 1983).

  • Robert, D. 1998. Semi-classical approximation in quantum mechanics. A survey of old and recent mathematical results. Helvetica Physica Acta 71: 44–116.

    MathSciNet  Google Scholar 

  • Schrödinger, E. 1978. Collected papers on wave mechanics, 2nd edn. Vermont: Chelsea Publishing Co.

  • Stepansky, B.K. 1997. Ambiguity: aspects of the wave-particle duality. The British Journal for the History of Science 30: 375–385.

    Article  MathSciNet  Google Scholar 

  • von Neumann, J. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer. (English translation Mathematical foundations of quantum mechanics, Princeton University Press, 1955).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Figari.

Additional information

Communicated by : T. Sauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figari, R., Teta, A. Emergence of classical trajectories in quantum systems: the cloud chamber problem in the analysis of Mott (1929). Arch. Hist. Exact Sci. 67, 215–234 (2013). https://doi.org/10.1007/s00407-012-0111-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-012-0111-z

Keywords

Navigation