Skip to main content
Log in

Effects of a single bilateral infusion of R-ketamine in the rat brain regions of a learned helplessness model of depression

  • Short Communication
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Effects of a single bilateral infusion of R-enantiomer of ketamine in rat brain regions of learned helplessness model of depression were examined. A single bilateral infusion of R-ketamine into infralimbic (IL) portion of medial prefrontal cortex (mPFC), CA3 and dentate gyrus (DG) of the hippocampus showed antidepressant effects. By contrast, a single bilateral infusion of R-ketamine into prelimbic (PL) portion of mPFC, shell and core of nucleus accumbens, basolateral amygdala and central nucleus of the amygdala had no effect. This study suggests that IL of mPFC, CA3 and DG of hippocampus might be involved in the antidepressant actions of R-ketamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB, APA Councilof Research Task Force on Novel Biomarkers and Treatments (2015) Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry 172:950–966

    Article  PubMed  Google Scholar 

  2. Kishimoto T, Chawla JM, Hagi K, Zarate CA, Kane JM, Bauer M, Correll CU (2016) Single-dose infusion ketamine and non-ketamine N-methyl-D-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol Med 46:1459–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang JC, Li SX, Hashimoto K (2014) R(-)-ketamine shows greater potency and longer lasting antidepressant effects than S(+)-ketamine. Pharmacol Biochem Behav 116:137–141

    Article  CAS  PubMed  Google Scholar 

  4. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang C, Hashimoto K (2014) Rapid antidepressant effects and abuse liability of ketamine. Psychopharmacology 231:2041–2042

    Article  CAS  PubMed  Google Scholar 

  6. Yang C, Han M, Zhang JC, Ren Q, Hashimoto K (2016) Loss of parvalbumin-immunoreactivity in mouse brain regions after repeated intermittent administration of esketamine, but not R-ketamine. Psychiatric Res 239:281–283

    Article  CAS  Google Scholar 

  7. Hashimoto K, Kakiuchi T, Ohba H, Nishiyama S, Tsukada H (2016) Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-016-0692-7

    Google Scholar 

  8. Hashimoto K (2016) R-ketamine: a rapid-onset and sustained antidepressant without risk of brain toxicity. Psychol Med 46:2449–2451

    Article  CAS  PubMed  Google Scholar 

  9. Hashimoto K (2016) Detrimental side effects of repeated ketamine infusions in the brain. Am J Psychiatry. doi:10.1176/appi.ajp.2016.16040411

    PubMed  Google Scholar 

  10. Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, Aghajanian GK, Duman RS (2015) Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci USA 112:8106–8111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang JC, Yao W, Dong C, Yang C, Ren Q, Ma M, Han M, Hashimoto K (2015) Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology 232:4325–4335

    Article  CAS  PubMed  Google Scholar 

  12. Ongür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    Article  PubMed  Google Scholar 

  13. Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    Article  PubMed  Google Scholar 

  14. Shirayama Y, Chaki S (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 4:277–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Campbell S, Marriott M, Nahmias C, MacQueen GM (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161:598–607

    Article  PubMed  Google Scholar 

  16. Shirayama Y, Yang C, Zhang JC, Ren Q, Yao W, Hashimoto K (2015) Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist. Eur Neuropsychopharmacol 25:2449–2458

    Article  CAS  PubMed  Google Scholar 

  17. Yang C, Shirayama Y, Zhang JC, Ren Q, Hashimoto K (2015) Regional differences in brain-derived neurotrophic factor levels and dendritic spine density confer resilience to inescapable stress. Int J Neuropsychopharmacol 18:pyu121

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang B, Yang C, Ren Q, Zhang JC, Chen QX, Shirayama Y, Hashimoto K (2016) Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-016-0693-6

    PubMed  Google Scholar 

  19. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  20. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chan T, Kyere K, Davis BR, Shemyakin A, Kabitzke PA, Shair HN, Barr GA, Wiedenmayer CP (2011) The role of the medial prefrontal cortex in innate fear regulation in infants, juveniles, and adolescents. J Neurosci 31:4991–4999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shirayama Y, Chen ACH, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    CAS  PubMed  Google Scholar 

  23. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vollmayr B, Bachteler D, Vengeliene V, Gass P, Spanagel R, Henn F (2004) Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res 150:217–221

    Article  CAS  PubMed  Google Scholar 

  25. Shabel SJ, Murphy RT, Malinow R (2014) Negative learning bias is associated with risk aversion in a genetic animal model of depression. Front Hum Neurosci 8:1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank to Ms. Yuko Fujita (Chiba University) for her technical assistance.

Funding and disclosure

This study was supported by a Grant-in-Aid for Scientific Research on Innovative Areas of the Ministry of Education, Culture, Sports, Science and Technology, Japan (to K.H.) and a grant from Strategic Research Program for Brain Sciences, AMED, Japan (to K.H.). Dr. Shirayama has received research support from Eli Lilly, Eisai, MSD, Otsuka, Pfizer, Taisho and Mitsubishi-Tanabe. Dr. Hashimoto is an inventor on a filed patent application on “The use of R-ketamine in the treatment of psychiatric diseases” by Chiba University. Dr. Hashimoto has received research support from Dainippon-Sumitomo, Mochida, Otsuka and Taisho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hashimoto.

Ethics declarations

Conflict of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirayama, Y., Hashimoto, K. Effects of a single bilateral infusion of R-ketamine in the rat brain regions of a learned helplessness model of depression. Eur Arch Psychiatry Clin Neurosci 267, 177–182 (2017). https://doi.org/10.1007/s00406-016-0718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-016-0718-1

Keywords

Navigation