Skip to main content

Advertisement

Log in

Lymph-node Epstein–Barr virus concentration in diagnosing cervical lymph-node metastasis in nasopharyngeal carcinoma

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

A Correction to this article was published on 10 November 2020

This article has been updated

Abstract

Purpose

Cervical lymph-node (CLN) metastasis commonly occurs in patients with nasopharyngeal carcinoma (NPC) metastasis. The presence of Epstein–Barr virus (EBV) genomes in neck lymph nodes may diagnose CLN. This research was designed to appraise the diagnostic value of EBV concentration for cervical lymph nodes in NPC.

Methods

Two hundred and fifty-three NPC patients with 276 CLNs were enrolled. MRI was performed to detect CLN metastasis, and plasma EBV concentration was measured by quantitative PCR before treatment. Ultrasonography (US) and US-FNA were subsequently performed in the suspicious lymph nodes. Fifteen patients (22 lymph nodes) underwent fine-needle aspiration cytology (FNAC), and the remaining 242 patients (254 lymph nodes) underwent core needle biopsy (CNB) for CLNs at the clinician’s demand. The aspiration needle was rinsed with 1 ml of normal saline for EBV detection. The method of lymph-node EBV measurement was consistent with that for plasma. The MRI results and EBV concentrations in plasma and lymph nodes were recorded and analyzed. Plasma EBV concentrations ≥ 4000 copies/ml were regarded as positive.

Results

CLN-EBV concentrations ≥ 787.5 copies/ml were regarded as positive according to receiver-operating characteristic curve analysis. The AUC of the EBV (0.925) concentration in CLN metastasis was significantly larger than the AUC of MRI (0.714) (P < 0.001). The sensitivity and specificity were 94.09% and 48.72% for MRI in lymph-node metastasis and 95.36% (P > 0.05) and 84.62% (P < 0.01) for EBV DNA in CLN metastasis, respectively. The sensitivity and specificity of EBV in plasma were 77.2% and 71.8%, respectively. The diagnostic specificity and AUC of EBV in CLNs were higher than those of MRI and plasma EBV (P < 0.005).

Conclusions

Ultrasound-guided CLN FNA to obtain EBV concentrations may provide a new method to diagnose CLN metastasis with high sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 10 November 2020

    In the original publication of the article, the affiliation of the author ���Can Huang��� was published incorrectly.

Abbreviations

CLN:

Cervical lymph node

NPC:

Nasopharyngeal carcinoma

EBV:

Epstein-Barr virus

FNAC:

Fine-needle aspiration cytology

FNA:

Fine-needle aspiration

PCR:

Polymerase chain reaction

IMRT:

Intensity-modulated radiotherapy

AJCC:

American Joint Committee on Cancer

CT:

Computed tomography

HIV:

Human immuno-deficiency virus

MRI:

Magnetic resonance imaging

FSE:

Fast spin-echo

T1WT:

T1-weighted imaging

T2WT:

T1-weighted imaging

RPN:

Retropharyngeal lymph nodes

CI:

Confidence interval

ROC:

Receiver-operating characteristic

NPV:

Negative predictive value

PPV:

Positive predictive value

AUC:

The area under the ROC curve

ROC:

Receiver-operating characteristic

CNB:

Core needle biopsy

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Zhang MX, Li J, Shen GP, Zou X, Xu JJ, Jiang R, You R, Hua YJ, Sun Y, Ma J, Hong MH, Chen MY (2015) Intensity-modulated radiotherapy prolongs the survival of patients with nasopharyngeal carcinoma compared with conventional two-dimensional radiotherapy: a 10-year experience with a large cohort and long follow-up. Eur J Cancer 51(17):2587–2595

    Article  PubMed  Google Scholar 

  3. Lin S, Lu JJ, Han L, Chen Q, Pan J (2010) Sequential chemotherapy and intensity-modulated radiation therapy in the management of locoregionally advanced nasopharyngeal carcinoma: experience of 370 consecutive cases. BMC Cancer 10:39

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wong FC, Ng AW, Lee VH, Lui CM, Yuen KK, Sze WK, Leung TW, Tung SY (2010) Whole-field simultaneous integrated-boost intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 76(1):138–145

    Article  PubMed  Google Scholar 

  5. Kam MK, Leung SF, Zee B, Chau RM, Suen JJ, Mo F, Lai M, Ho R, Cheung KY, Yu BK, Chiu SK, Choi PH, Teo PM, Kwan WH, Chan AT (2007) Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J Clin Oncol 25(31):4873–4879

    Article  PubMed  Google Scholar 

  6. Ou X, Zhou X, Shi Q, Xing X, Yang Y, Xu T, Shen C, Wang X, He X, Kong L, Ying H, Hu C (2015) Treatment outcomes and late toxicities of 869 patients with nasopharyngeal carcinoma treated with definitive intensity modulated radiation therapy: new insight into the value of total dose of cisplatin and radiation boost. Oncotarget 6(35):38381–38397

    Article  PubMed  PubMed Central  Google Scholar 

  7. King AD, Ahuja AT, Leung SF, Lam WW, Teo P, Chan YL, Metreweli C (2000) Neck node metastases from nasopharyngeal carcinoma: MR imaging of patterns of disease. Head Neck 22(3):275–281

    Article  CAS  PubMed  Google Scholar 

  8. Ho FC, Tham IW, Earnest A, Lee KM, Lu JJ (2012) Patterns of regional lymph node metastasis of nasopharyngeal carcinoma: a meta-analysis of clinical evidence. BMC Cancer 12:98

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liao XB, Mao YP, Liu LZ, Tang LL, Sun Y, Wang Y et al (2008) How does magnetic resonance imaging influence staging according to AJCC staging system for nasopharyngeal carcinoma compared with computed tomography? Int J Radiat Oncol Biol Phys 72(5):1368–1377. https://doi.org/10.1016/j.ijrobp.2008.03.017

    Article  PubMed  Google Scholar 

  10. Chan JY, Chan RC, Chow VL, To VS, Wei WI (2013) Efficacy of fine-needle aspiration in diagnosing cervical nodal metastasis from nasopharyngeal carcinoma after radiotherapy. Laryngoscope 123(1):134–139

    Article  PubMed  Google Scholar 

  11. Leung SF, Zee B, Ma BB, Hui EP, Mo F, Lai M, Chan KC, Chan LY, Kwan WH, Lo YM, Chan AT (2006) Plasma Epstein-Barr viral deoxyribonucleic acid quantitation complements tumor-node-metastasis staging prognostication in nasopharyngeal carcinoma. J Clin Oncol 24(34):5414–5418. https://doi.org/10.1200/jco.2006.07.7982

    Article  CAS  PubMed  Google Scholar 

  12. Kim KY, Le QT, Yom SS, Ng RHW, Chan KCA, Bratman SV, Welch JJ, Divi RL, Petryshyn RA, Conley BA (2017) Clinical utility of Epstein-Barr virus DNA testing in the treatment of nasopharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys 98(5):996–1001

    Article  PubMed  Google Scholar 

  13. Wang WY, Twu CW, Lin WY, Jiang RS, Liang KL, Chen KW, Wu CT, Shih YT, Lin JC (2011) Plasma Epstein-Barr virus DNA screening followed by 18F-fluoro-2-deoxy-D-glucose positron emission tomography in detecting posttreatment failures of nasopharyngeal carcinoma. Cancer 117(19):4452–4459

    Article  CAS  PubMed  Google Scholar 

  14. Wang WY, Twu CW, Chen HH, Jan JS, Jiang RS, Chao JY, Liang KL, Chen KW, Wu CT, Lin JC (2010) Plasma EBV DNA clearance rate as a novel prognostic marker for metastatic/recurrent nasopharyngeal carcinoma. Clin Cancer Res 16:1016–1024

    Article  CAS  PubMed  Google Scholar 

  15. Chan KCA, Woo JKS, King A, Zee BCY, Lam WKJ, Chan SL, Chu SWI, Mak C, Tse IOL, Leung SYM, Chan G, Hui EP, Ma BBY, Chiu RWK, Leung SF, van Hasselt AC, Chan ATC, Lo YMD (2017) Analysis of plasma Epstein-Barr virus DNA to screen for nasopharyngeal cancer. N Engl J Med 377(6):513–522

    Article  CAS  PubMed  Google Scholar 

  16. Lee VH, Kwong DL, Leung TW, Choi CW, O'Sullivan B, Lam KO, Lai V, Khong PL, Chan SK, Ng CY, Tong CC, Ho PP, Chan WL, Wong LS, Leung DK, Chan SY, So TH, Luk MY, Lee AW (2018) The addition of pretreatment plasma Epstein-Barr virus DNA into the eighth edition of nasopharyngeal cancer TNM stage classification. Int J Cancer 144(7):1713–1722

    Article  PubMed  Google Scholar 

  17. Feinmesser R, Miyazaki I, Cheung R, Freeman JL, Noyek AM, Dosch HM (1992) Diagnosis of nasopharyngeal carcinoma by DNA amplification of tissue obtained by fine-needle aspiration. N Engl J Med 326(1):17–21

    Article  CAS  PubMed  Google Scholar 

  18. Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17(6):1471–1474

    Article  PubMed  Google Scholar 

  19. van den Brekel MW, Stel HV, Castelijns JA, Nauta JJ, van der Waal I, Valk J, Meyer CJ, Snow GB (1990) Cervical lymph node metastasis: assessment of radiologic criteria. Radiology 177(2):379–384

    Article  PubMed  Google Scholar 

  20. Mao YP, Liang SB, Liu LZ, Chen Y, Sun Y, Tang LL, Tian L, Lin AH, Liu MZ, Li L, Ma J (2008) The N staging system in nasopharyngeal carcinoma with radiation therapy oncology group guidelines for lymph node levels based on magnetic resonance imaging. Clin Cancer Res 14(22):7497–7503

    Article  CAS  PubMed  Google Scholar 

  21. Grégoire V, Ang K, Budach W, Grau C, Hamoir M, Langendijk JA, Lee A, Le QT, Maingon P, Nutting C, O'Sullivan B, Porceddu SV, Lengele B (2014) Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol 110(1):172–181

    Article  PubMed  Google Scholar 

  22. Vassallo P, Wernecke K, Roos N, Peters PE (1992) Differentiation of benign from malignant superficial lymphadenopathy: the role of high-resolution US. Radiology 183(1):215–220. https://doi.org/10.1148/radiology.183.1.1549675

    Article  CAS  PubMed  Google Scholar 

  23. Ying M, Bhatia KS, Lee YP, Yuen HY, Ahuja AT (2014) Review of ultrasonography of malignant neck nodes: greyscale, Doppler, contrast enhancement and elastography. Cancer Imaging 13(4):658–669. https://doi.org/10.1102/1470-7330.2013.0056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abeynayake J, Johnson R, Libiran P, Sahoo MK, Cao H, Bowen R, Chan KC, Le QT, Pinsky BA (2014) Commutability of the Epstein-Barr virus WHO international standard across two quantitative PCR methods. J Clin Microbiol 52(10):3802–3804. https://doi.org/10.1128/JCM.01676-14

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lo YM, Chan LY, Chan AT, Leung SF, Lo KW, Zhang J, Lee JC, Hjelm NM, Johnson PJ, Huang DP (1999) Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Can Res 59(21):5452–5455

    CAS  Google Scholar 

  26. Guo R, Tang LL, Mao YP, Du XJ, Chen L, Zhang ZC, Liu LZ, Tian L, Luo XT, Xie YB, Ren J, Sun Y, Ma J (2019) Proposed modifications and incorporation of plasma Epstein-Barr virus DNA improve the TNM staging system for Epstein-Barr virus-related nasopharyngeal carcinoma. Cancer 125(1):79–89

    Article  CAS  PubMed  Google Scholar 

  27. Chan AT, Lo YM, Zee B, Chan LY, Ma BB, Leung SF, Mo F, Lai M, Ho S, Huang DP, Johnson PJ (2002) Plasma Epstein-Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J Natl Cancer Inst 94(21):1614–1619. https://doi.org/10.1093/jnci/94.21.1614

    Article  CAS  PubMed  Google Scholar 

  28. Hafez NH, Tahoun NS (2010) Reliability of fine needle aspiration cytology (FNAC) as a diagnostic tool in cases of cervical lymphadenopathy. J Egypt Natl Cancer Inst 23(3):105–114. https://doi.org/10.1016/j.jnci.2011.09.009

    Article  Google Scholar 

  29. Viguer JM, Jimenez-Heffernan JA, Lopez-Ferrer P, Banaclocha M, Vicandi B (2005) Fine-needle aspiration cytology of metastatic nasopharyngeal carcinoma. Diagn Cytopathol 32(4):233–237. https://doi.org/10.1002/dc.20216

    Article  PubMed  Google Scholar 

  30. Toh ST, Yuen HW, Lim KH, Goh YH, Goh HK (2011) Residual cervical lymphadenopathy after definitive treatment of nasopharyngeal carcinoma: fine needle aspiration cytology, computed tomography and histopathological findings. J Laryngol Otol 125(1):70–77

    Article  PubMed  Google Scholar 

  31. Huang C, Chen QY, Zuo FF, Peng C, Zhong SB, Mai HQ, Chen MY, Zou RH (2018) Diagnostic value of lymph node EBV-DNA detection in cervical lymph node metastasis of nasopharyngeal carcinoma. J Int Oncol 45(3):143–147. https://doi.org/10.3760/cma.j.issn.1673-422X.2018.03.004(in Chinese)

    Article  Google Scholar 

  32. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK et al (2017) The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more personalized approach to cancer staging. CA Cancer J Clin 67(2):93–99. https://doi.org/10.3322/caac.21388

    Article  PubMed  Google Scholar 

  33. Lee AW, Ng WT, Pan JJ, Poh SS, Ahn YC, AlHussain H, Corry J, Grau C, Grégoire V, Harrington KJ, Hu CS, Kwong DL, Langendijk JA, Le QT, Lee NY, Lin JC, Lu TX, Mendenhall WM, O'Sullivan B, Ozyar E, Peters LJ, Rosenthal DI, Soong YL, Tao Y, Yom SS, Wee JT (2018) International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother Oncol 126(1):25–36

    Article  PubMed  Google Scholar 

  34. Yan SX, Yan DF, Yang JS, Sun XL, Lu ZJ, Liao XB, Xie JJ (2011) Use of diffusion-weighted magnetic resonance imaging in cervical lymph node metastasis from nasopharyngeal carcinoma patients receiving intensity modulated radiation therapy. Chin J Radiol Med Prot 31(3):312–316. https://doi.org/10.3760/cma.j.issn.0254-5098.2011.03.016(in Chinese)

    Article  Google Scholar 

  35. Ou X, Miao Y, Wang X, Ding J, He X, Hu C (2017) The feasibility analysis of omission of elective irradiation to level IB lymph nodes in low-risk nasopharyngeal carcinoma based on the 2013 updated consensus guideline for neck nodal levels. Radiat Oncol 12(1):137. https://doi.org/10.1186/s13014-017-0869-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee WY, Hsiao JR, Jin YT, Tsai ST (2000) Epstein-Barr virus detection in neck metastases by in-situ hybridization in fine-needle aspiration cytologic studies: an aid for differentiating the primary site. Head Neck 22(4):336–340

    Article  CAS  PubMed  Google Scholar 

  37. Naseem M, Barzi A, Brezden-Masley C, Puccini A, Berger MD, Tokunaga R, Battaglin F, Soni S, McSkane M, Zhang W, Lenz HJ (2018) Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat Rev 66:15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Urayama KY, Jarrett RF, Hjalgrim H, Diepstra A, Kamatani Y, Chabrier A et al (2012) Genome-wide association study of classical Hodgkin lymphoma and Epstein-Barr virus status-defined subgroups. J Natl Cancer Inst 104(3):240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chan JY, Wong EW, Ng SK, Vlantis AC (2016) Non-nasopharyngeal head and neck lymphoepithelioma-like carcinoma in the United States: a population-based study. Head Neck 38(Suppl 1):E1294–E1300

    Article  PubMed  Google Scholar 

  40. Le QT, Zhang Q, Cao H, Cheng AJ, Pinsky BA, Hong RL, Chang JT, Wang CW, Tsao KC, Lo YD, Lee N, Ang KK, Chan AT, Chan KC (2013) An international collaboration to harmonize the quantitative plasma Epstein-Barr virus DNA assay for future biomarker-guided trials in nasopharyngeal carcinoma. Clin Cancer Res 19(8):2208–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hou X, Zhao C, Guo Y et al (2011) Different clinical significance of pre- and post-treatment plasma Epstein-Barr virus DNA load in nasopharyngeal carcinoma treated with radiotherapy. Clin Oncol 23(2):128–133. https://doi.org/10.1016/j.clon.2010.09.001

    Article  Google Scholar 

  42. Santpere G, Darre F, Blanco S, Alcami A, Villoslada P, Mar Albà M, Navarro A (2014) Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 genomes project. Genome Biol Evol 6(4):846–860

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kim KY, Le QT, Yom SS, Pinsky BA, Bratman SV, Ng RH, El Mubarak HS, Chan KC, Sander M, Conley BA (2017) Current state of PCR-based Epstein-Barr Virus DNA testing for nasopharyngeal cancer. J Natl Cancer Inst 109(4). https://doi.org/10.1093/jnci/djx007

Download references

Funding

This work was supported by the Science and Technology Planning Project of Guangdong Province, China (No. 2017A050506020).

Author information

Authors and Affiliations

Authors

Contributions

HM and RHZ had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. HL and CH contributed equally to the work and are co-first authors. RHZ and HM: Study concept and design. HL and CH: Study concept and design. HL: Statistical analysis. HL and CH: Manuscript editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Haiqiang Mai or Ruhai Zou.

Ethics declarations

Conflict of interest

None.

Ethics approval and consent to participate

This study was approved by the institutional review board (B2018-023) and all patients was provided informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Huang, C., Chen, Q. et al. Lymph-node Epstein–Barr virus concentration in diagnosing cervical lymph-node metastasis in nasopharyngeal carcinoma. Eur Arch Otorhinolaryngol 277, 2513–2520 (2020). https://doi.org/10.1007/s00405-020-05937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-020-05937-5

Keywords

Navigation