Skip to main content

Advertisement

Log in

The role of F18-fluorocholine positron emission tomography/magnetic resonance imaging in localizing parathyroid adenomas

  • Head & Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Preoperative localization of a parathyroid adenoma is usually obtained by the combination of ultrasound and scintigraphy with technetium-99m methoxyisobutylisonitrile. We evaluated the role of F18-fluorocholine in neck positron emission tomography/magnetic resonance imaging as a novel tool for localizing parathyroid adenomas.

Methods

Patients with primary hyperparathyroidism were recruited from February 2016 to August 2017 and F18-fluorocholine positron emission tomography/magnetic resonance imaging was performed to localize the parathyroid adenoma prior to surgery. We compared sensitivity and accuracy of this modality with ultrasound and technetium-99m methoxyisobutylisonitrile scintigraphy using the verified location of the diseased parathyroid as found in surgery.

Results

Nineteen patients were included in our study (15 women and 4 men, mean age 60.5 ± 9.8 years). Positron emission tomography/magnetic resonance imaging precisely localized the pathologic parathyroid gland in 16/19 cases (84.2%) and predicted the diseased side in 19/19 cases (100%). Ultrasound and technetium 99 m methoxyisobutylisonitrile sestamibi scintigraphy predicted the location of the parathyroid adenoma in 16/19 (84.2%) and 14/19 (74%), respectively. In 3/19 patients, positron emission tomography/magnetic resonance imaging localized the parathyroid adenoma where as other modalities failed. Positron emission tomography/magnetic resonance imaging was more accurate when compared to each modality separately (p < 0.001, p = 0.017), however, when comparing the three modalities all together no differences were found (p = 0.506).

Conclusions

Localizing parathyroid adenomas with F18-fluorocholine positron emission tomography/magnetic resonance imaging may be a promising secondary imaging modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brown SJ, Lee JC, Christie J, Maher R, Sidhu SB, Sywak MS, Delbridge LW (2015) 4DCT for parathyroid localization. ANZ J Surg 85:483–487. https://doi.org/10.1111/ans.12571

    Article  PubMed  Google Scholar 

  2. Suh YJ, Choi JY, Kim SJ, Chun IK, Yun TJ, Lee KE, Kim JH, Cheon GJ, Youn YK (2015) Comparison of 4D CT, ultrasonography, and 99mTc sestamibi SPECT/CT in localizing single-gland primary hyperparathyroidism. Otolaryngol Head Neck Surg 152:438–443. https://doi.org/10.1177/0194599814562195

    Article  Google Scholar 

  3. Kunstman JW, Kirsch JD, Mahajan A, Udelsman R (2013) Clinical review: parathyroid localization and implications for clinical management. J Clin Endocrinol Metab 98:902–912. https://doi.org/10.1210/jc.2012-3168

    Article  CAS  PubMed  Google Scholar 

  4. Kelly HR, Hamberg LM, Hunter GJ (2014) 4D–CT for preoperative localization of abnormal parathyroid glands in patients with hyperparathyroidism: accuracy and ability to stratify patients by unilateral versus bilateral disease in surgery-naïve and re-exploration patients. AJNR Am J Neuroradiol 35:176–181. https://doi.org/10.3174/ajnr.A3615

    Article  CAS  PubMed  Google Scholar 

  5. Rameau A, Eng S, Vu J, Saket R, Jun P, Friduss M (2017) Four-dimensional computed tomography scan utility in parathyroidectomy for primary hyperparathyroidism with low baseline intact parathyroid hormone. Laryngoscope 127:1476–1482. https://doi.org/10.1002/lary.26201

    Article  CAS  PubMed  Google Scholar 

  6. Kluijfhout WP, Pasternak JD, Drake FT et al (2016) Use of PET tracers for parathyroid localization: a systematic review and meta-analysis. Langenbecks Arch Surg 401:925–935

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yuan L, Liu J, Kan Y, Yang J, Wang X (2017) The diagnostic value of 11C-methionine PET in hyperparathyroidism with negative 99mTc-MIBI SPECT: a meta-analysis. Acta Radiol 58(5):558–564. https://doi.org/10.1177/0284185116661878

    Article  PubMed  Google Scholar 

  8. Noltes ME, Coester AM, Van der Horst-Schrivers ANA et al (2017) Localization of parathyroid adenomas using 11C-methionine pet after prior inconclusive imaging. Langenbecks Arch Surg 402:1109–1117. https://doi.org/10.1007/s00423-017-1549-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weber T, Gottstein M, Schwenzer S, Beer A, Luster M (2017) Is C-11 methionine PET/CT able to localise sestamibi-negative parathyroid adenomas? World J Surg 41:980–985. https://doi.org/10.1007/s00268-016-3795-4

    Article  PubMed  Google Scholar 

  10. Kluijfhout WP, Vorselaars WM, van den Berk SA et al (2016) Fluorine-18 fluorocholine PET-CT localizes hyperparathyroidism in patients with inconclusive conventional imaging: a multicenter study from the Netherlands. Nucl Med Commun 37:1246–1252

    Article  CAS  Google Scholar 

  11. Kluijfhout WP, Vorselaars WM, Vriens MR, Borel Rinkes IH, Valk GD, de Keizer B (2015) Enabling minimal invasive parathyroidectomy for patients with primary hyperparathyroidism using Tc-99m-sestamibi SPECT-CT, ultrasound and first results of (18)F-fluorocholine PET-CT. Eur J Radiol 84:1745–1751. https://doi.org/10.1016/j.ejrad.2015.05.024

    Article  Google Scholar 

  12. Gatidis S, Bender B, Reimold M, Schäfer JF (2017) PET/MRI in children. Eur J Radiol 94:A64–A70. https://doi.org/10.1016/j.ejrad.2017.01.018

    Article  PubMed  Google Scholar 

  13. Mittal BR, Singh S (2017) Hybrid PET/MR imaging for evaluation of recurrence in gliomas: standard of care or luxury? Neurol India 65:302–304. https://doi.org/10.4103/0028-3886.201846

    Article  CAS  PubMed  Google Scholar 

  14. Domachevsky L, Leibovitzh H, Avni-Biron I et al (2017) Correlation of 18F-FDG PET/MRE metrics with inflammatory biomarkers in patients with Crohns disease. a pilot study. Contrast Media Mol Imaging 19:7167292. https://doi.org/10.1155/2017/7167292

    Article  CAS  Google Scholar 

  15. McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22:276–282

    Article  Google Scholar 

  16. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  Google Scholar 

  17. Ryan S, Courtney D, Moriariu J, Timon C (2017) Surgical management of primary hyperparathyroidism. Eur Arch Otorhinolaryngol 274:4225–4232. https://doi.org/10.1007/s00405-017-4776-4

    Article  PubMed  Google Scholar 

  18. Kluijfhout WP, Pasternak JD, Gosnell JE et al (2017) 18F fluorocholine PET/MR imaging in patients with primary hyperparathyroidism and inconclusive conventional imaging: a prospective pilot study. Radiology 284:460–467. https://doi.org/10.1148/radiol.2016160768

    Article  Google Scholar 

  19. Huber GF, Hüllner M, Schmid C et al (2018) Benefit of 18F-fluorocholine PET imaging in parathyroid surgery. Eur Radiol 28:2700–2707. https://doi.org/10.1007/s00330-017-5190-4

    Article  CAS  Google Scholar 

  20. Soyder A, Ünübol M, Ömürlü İK et al (2015) Minimally invasive parathyroidectomy without using intraoperative parathyroid hormone monitoring or gamma probe. Ulus Cerrahi Derg 31:9–14. https://doi.org/10.5152/UCD.2014.2572

    Article  PubMed  PubMed Central  Google Scholar 

  21. Patel KN, Caso R (2016) Intraoperative parathyroid hormone monitoring: optimal utilization. Surg Oncol Clin N Am 25:91–101. https://doi.org/10.1016/j.soc.2015.08.005

    Article  PubMed  Google Scholar 

  22. Sakimura C, Minami S, Hayashida N et al (2013) Can the use of intraoperative intact parathyroid hormone monitoring be abandoned in patients with hyperparathyroidism? Am J Surg 206:574–577. https://doi.org/10.1016/j.amjsurg.2013.01.043

    Article  CAS  PubMed  Google Scholar 

  23. Helbrow J, Owais A, Sidwell A, Frank L, Lucarotti M (2016) The use of intraoperative parathyroid hormone monitoring in minimally invasive parathyroid surgery. Ann R Coll Surg Engl 98:516–519. https://doi.org/10.1308/rcsann.2016.0201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Nyall R. London Jr. MD, PhD. Ohio State University—College of Medicine. Department of Otolaryngology—Head and Neck Surgery. Columbus, Ohio 43210. Performed grammar and English language review.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhamed Masalha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khafif, A., Masalha, M., Landsberg, R. et al. The role of F18-fluorocholine positron emission tomography/magnetic resonance imaging in localizing parathyroid adenomas. Eur Arch Otorhinolaryngol 276, 1509–1516 (2019). https://doi.org/10.1007/s00405-019-05301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-019-05301-2

Keywords

Navigation