Skip to main content
Log in

The endoscopic study of human middle ear mucociliary transport

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

The mucociliary clearance (MCC) is an important defence mechanism of the middle ear. The mucociliary transport (MCT) is a part of MCC. We measured the duration of MCT and visualised its routes in middle ears of 31 patients (mean age 45 years; range 7–61 years; SD 11.6) with intact tympanic membrane, with ventilated middle ears and without a history of prolonged otitis media. The transition time of indigo carmine dye from the promontory mucosa to the middle ear orifice of the Eustachian tube (ET) was observed with a rigid 30°, 1.7-mm-diameter tympanoscope. The dye took an average of 7 min (range 4.5–15 min; SD 3.4; median 4.5) to reach the ET orifice in 25 (81 %) patients. Three main ciliary pathways were detected: (1) below and parallel to the tensor tympani muscle; (2) downwards, anterior to the round window, and then ascending to the ET; and (3) straight across the promontory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sade J (1966) Middle ear mucosa. Arch Otolaryngol 84:137–143

    Article  CAS  PubMed  Google Scholar 

  2. Hentzer E (1970) Histologic studies of the normal mucosa of the middle ear, mastoid cavities and Eustachian tube. Ann Otol Rhino Laryngol 79:825–833

    Article  CAS  Google Scholar 

  3. Ars B, Wuyts F, Van de Heyning P, Miled I, Bogers J, Van Marck E (1997) Histomorphometric study of the normal middle ear mucosa. Preliminary results supporting the gas-exchange function in the postero-superior part of the middle ear cleft. Acta Otolaryngol Stockh 117(5):704–707

    Article  CAS  PubMed  Google Scholar 

  4. Sade J (1967) Ciliary activity and middle ear clearance. Arch Otolaryngol 86:128–135

    Article  CAS  PubMed  Google Scholar 

  5. Shimada T, Liam DJ (1972) Distribution of ciliated cells in the human middle ear. Electron and light microscopic observations. Ann Otol Rhinol Laryngol 81(2):203–211

    Article  CAS  PubMed  Google Scholar 

  6. Sade J, Ar A (1997) Middle ear and auditory tube: middle ear clearance, gas exchange and pressure regulation. Otolaryngol Head Neck Surg 116(4):499–524

    Article  CAS  PubMed  Google Scholar 

  7. Prulière-Escabasse V, Coste A, Chauvin P, Fauroux B, Tamalet A, Garabedian EN, Escudier E, Roger G (2010) Otologic features in children with primary ciliary dyskinesia. Arch Otolaryngol Head Neck Surg 136(11):1121–1126. doi:10.1001/archoto.2010.183

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cunsolo E, Marchioni D, Leo G, Incorvaia C, Presutti L (2010) Functional anatomy of the Eustachian tube. Int J Immunopathol Pharmacol 23(1 Suppl):4–7

    CAS  PubMed  Google Scholar 

  9. Agius AM, Wake M, Pahor AL, Smallman LA (1995) Nasal and middle ear ciliary beat frequency in chronic suppurative otitis media. Clin Otolaryngol 20:470–474

    Article  CAS  PubMed  Google Scholar 

  10. Gurr A, Stark T, Pearson M, Borkowski G, Dazert S (2009) The ciliary beat frequency of middle ear mucosa in children with chronic secretory otitis media. Eur Arch Otorhinolaryngol 266(12):1865–1870. doi:10.1007/s00405-009-0984-x

    Article  PubMed  Google Scholar 

  11. Kärjä J, Nuutinen J, Karjalainen P (1983) Mucociliary function in children with secretory otitis media. Acta Otolaryngol Stockh 95:544–546

    Article  PubMed  Google Scholar 

  12. Honjo I (1989) Normal and pathological mucociliary function in middle ear disease. In: Sade J (ed) The Eustachian tube, basic aspects, selected papers from a conference on the Eustachian tube and middle ear diseases. Kugler & Ghedini Publications, The Netherlands, pp 175–178

    Google Scholar 

  13. Duchateau GS, Graamans K, Zuidema J, Merkus FW (1985) Correlation between nasal ciliary beat frequency and mucus transport rate in volunteers. Laryngoscope 95(7 Pt 1):854–859

    CAS  PubMed  Google Scholar 

  14. Bottrill I, Perrault DF, Poe D (1996) In vitro and in vivo determination of the thermal effect middle ear endoscopy. Laryngoscope 106(2 Pt 1):213–216

    Article  CAS  PubMed  Google Scholar 

  15. Kozin ED, Lehmann A, Carter M, Hight E, Cohen M, Nakajima HH, Lee DJ (2014) Thermal effects of endoscopy in a human temporal bone model: implications for endoscopic ear surgery. Laryngoscope 124(8):E332–E339. doi:10.1002/lary.24666

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ingels KJ, Nijziel MR, Graamans K, Huizing EH (1994) Influence of cocaine and lidocaine on human nasal cilia. Beat frequency and harmony in vitro. Arch Otolaryngol Head Neck Surg 120(2):197–201

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaana H. Ilomäki.

Ethics declarations

Conflict of interest

There are no financial or other conflicts of interest related to the present paper for any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilomäki, J.H., Karhuketo, T., Vasama, J.P. et al. The endoscopic study of human middle ear mucociliary transport. Eur Arch Otorhinolaryngol 273, 1711–1715 (2016). https://doi.org/10.1007/s00405-015-3730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-015-3730-6

Keywords

Navigation