Skip to main content

Advertisement

Log in

Effects of histamine on ciliary beat frequency of ciliated cells from guinea pigs nasal mucosa

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

We aimed to investigate the effect of histamine on ciliary beat frequency (CBF) through combining high-speed digital microscopy and patch-clamp technology. Ciliated cells were obtained from septum and turbinate of 90–120-day-old healthy male guinea pigs. Tight seal was formed by applying negative pressure on the glass electrode after the drawing and pushing progress. Then, we enrolled high-speed digital microscopy to measure CBF before and after treatment with histamine of different concentrations ranging from 10−6 to 10−1 mol/L in Hank’s solution and D-Hank’s solution as well as after administrating adenosine triphosphate. One-way ANOVA, Student’s t test or Kruskal–Wallis test was used for statistical comparisons. Glass electrode fix up ciliated cell is available at tip diameter of 2–5 μm and negative pressure of 10–20 cmH2O column. The baseline CBF in Hank’s solution was higher than in D-Hank’s solution. Treatment with 10−6–l0−3 mol/L histamine of concentrations can stimulate a rise of CBF. Nevertheless, CBF in all groups decreased to baseline CBF within 20 min. Generally, 10−2 mol/L histamine can stimulate a rise of CBF; meanwhile, the high concentration of histamine killed 50 % ciliated cell. Histamine at 10−1 mol/L killed all ciliated cells. Ciliary beating activity decreased in Ca2+-free solution. Moreover, adenosine triphosphate could increase CBF effectively after the stimulation effect of histamine. We construct an effective technology integrating patch-clamp technique with CBF measurements on ciliated cells. Extracellular histamine stimulation could increase CBF effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Satir P, Sleigh MA (1990) The physiology of cilia and mucociliary interactions. Annu Rev Physiol 52:137–155. doi:10.1146/annurev.ph.52.030190.001033

    Article  CAS  PubMed  Google Scholar 

  2. Inoue D, Furubayashi T, Ogawara K, Kimura T, Higaki K, Shingaki T, Kimura S, Tanaka A, Katsumi H, Sakane T, Yamamoto A, Higashi Y (2013) In vitro evaluation of the ciliary beat frequency of the rat nasal epithelium using a high-speed digital imaging system. Biol Pharm Bull 36(6):966–973. doi:10.1248/bpb.b12-01076

  3. Cohen NA (2006) Sinonasal mucociliary clearance in health and disease. Ann Otol Rhinol Laryngol Suppl 196:20–26

    PubMed  Google Scholar 

  4. Chen B, Antunes MB, Claire SE, Palmer JN, Chiu AG, Kennedy DW, Cohen NA (2007) Reversal of chronic rhinosinusitis-associated sinonasal ciliary dysfunction. Am J Rhinol 21(3):346–353

    Article  PubMed  Google Scholar 

  5. Conger BT, Zhang S, Skinner D, Hicks SB, Sorscher EJ, Rowe SM, Woodworth BA (2013) Comparison of cystic fibrosis transmembrane conductance regulator (CFTR) and ciliary beat frequency activation by the CFTR Modulators Genistein, VRT-532, and UCCF-152 in primary sinonasal epithelial cultures. JAMA Otolaryngol Head Neck Surg 139(8):822–827. doi:10.1001/jamaoto.2013.39171729104

    Article  PubMed Central  PubMed  Google Scholar 

  6. Smith CM, Radhakrishnan P, Sikand K, O’Callaghan C (2013) The effect of ethanol and acetaldehyde on brain ependymal and respiratory ciliary beat frequency. Cilia 2(1):5. doi:10.1186/2046-2530-2-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lee MC, Kim DW, Kim DY, Rhee CS (2011) The effect of histamine on ciliary beat frequency in the acute phase of allergic rhinitis. Am J Otolaryngol 32(6):517–521. doi:10.1016/j.amjoto.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  8. Mussatto DJ, Garrard CS, Lourenco RV (1988) The effect of inhaled histamine on human tracheal mucus velocity and bronchial mucociliary clearance. Am Rev Respir Dis 138(4):775–779. doi:10.1164/ajrccm/138.4.775

    Article  CAS  PubMed  Google Scholar 

  9. Esaki Y, Ohashi Y, Furuya H, Sugiura Y, Ohno Y, Okamoto H, Nakai Y (1991) Histamine-induced mucociliary dysfunction and otitis media with effusion. Acta Otolaryngol Suppl 486:116–134

    Article  CAS  PubMed  Google Scholar 

  10. Dolata J, Lindberg S, Mercke U (1990) Histamine stimulation of mucociliary activity in the rabbit maxillary sinus. Ann Otol Rhinol Laryngol 99(8):666–671

    Article  CAS  PubMed  Google Scholar 

  11. Schuil PJ, van Gelder JM, ten Berge M, Graamans K, Huizing EH (1994) Histamine and leukotriene C4 effects on in vitro ciliary beat frequency of human upper respiratory cilia. Eur Arch Otorhinolaryngol 251(6):325–328

    Article  CAS  PubMed  Google Scholar 

  12. Wu R, Yankaskas J, Cheng E, Knowles MR, Boucher R (1985) Growth and differentiation of human nasal epithelial cells in culture. Serum-free, hormone-supplemented medium and proteoglycan synthesis. Am Rev Respir Dis 132(2):311–320

    CAS  PubMed  Google Scholar 

  13. Zagoory O, Braiman A, Priel Z (2002) The mechanism of ciliary stimulation by acetylcholine: roles of calcium, PKA, and PKG. J Gen Physiol 119(4):329–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hayashi T, Kawakami M, Sasaki S, Katsumata T, Mori H, Yoshida H, Nakahari T (2005) ATP regulation of ciliary beat frequency in rat tracheal and distal airway epithelium. Exp Physiol 90(4):535–544. doi:10.1113/expphysiol.2004.028746

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Sanderson MJ (2003) Oscillations in ciliary beat frequency and intracellular calcium concentration in rabbit tracheal epithelial cells induced by ATP. J Physiol 546(Pt 3):733–749 (pii PHY_028704)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802

    Article  CAS  PubMed  Google Scholar 

  17. Bleier BS, Mulligan RM, Schlosser RJ (2012) Primary human sinonasal epithelial cell culture model for topical drug delivery in patients with chronic rhinosinusitis with nasal polyposis. J Pharm Pharmacol 64(3):449–456. doi:10.1111/j.2042-7158.2011.01409.x

    Article  CAS  PubMed  Google Scholar 

  18. Shiima-Kinoshita C, Min KY, Hanafusa T, Mori H, Nakahari T (2004) Beta 2-adrenergic regulation of ciliary beat frequency in rat bronchiolar epithelium: potentiation by isosmotic cell shrinkage. J Physiol 554(Pt 2):403–416. doi:10.1113/jphysiol.2003.056481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. O’Callaghan C, Sikand K, Chilvers MA (2012) Analysis of ependymal ciliary beat pattern and beat frequency using high speed imaging: comparison with the photomultiplier and photodiode methods. Cilia 1(1):8. doi:10.1186/2046-2530-1-82046

    Article  PubMed Central  PubMed  Google Scholar 

  20. Winters SL, Davis CW, Boucher RC (2007) Mechanosensitivity of mouse tracheal ciliary beat frequency: roles for Ca2+, purinergic signaling, tonicity, and viscosity. Am J Physiol Lung Cell Mol Physiol 292(3):L614–L624. doi:10.1152/ajplung.00288.2005

    Article  CAS  PubMed  Google Scholar 

  21. Iravani J, Melville GN (1975) Effects of drugs and environmental factors on ciliary movement (author’s transl). Respiration 32(2):157–164

    Article  CAS  PubMed  Google Scholar 

  22. Barrera NP, Morales B, Villalon M (2004) Plasma and intracellular membrane inositol 1,4,5-trisphosphate receptors mediate the Ca(2+) increase associated with the ATP-induced increase in ciliary beat frequency. Am J Physiol Cell Physiol 287(4):C1114–C1124. doi:10.1152/ajpcell.00343.2003

    Article  CAS  PubMed  Google Scholar 

  23. Kawakami M, Nagira T, Hayashi T, Shimamoto C, Kubota T, Mori H, Yoshida H, Nakahari T (2004) Hypo-osmotic potentiation of acetylcholine-stimulated ciliary beat frequency through ATP release in rat tracheal ciliary cells. Exp Physiol 89(6):739–751. doi:10.1113/expphysiol.2004.028670

    Article  CAS  PubMed  Google Scholar 

  24. Evans JH, Sanderson MJ (1999) Intracellular calcium oscillations induced by ATP in airway epithelial cells. Am J Physiol 277(1 Pt 1):L30–L41

    CAS  PubMed  Google Scholar 

  25. Levin R, Braiman A, Priel Z (1997) Protein kinase C induced calcium influx and sustained enhancement of ciliary beating by extracellular ATP. Cell Calcium 21(2):103–113 [pii S0143-4160(97)90034-8]

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

We have no conflict of interest to state.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, F., Xing, L., Zhang, Z. et al. Effects of histamine on ciliary beat frequency of ciliated cells from guinea pigs nasal mucosa. Eur Arch Otorhinolaryngol 272, 2839–2845 (2015). https://doi.org/10.1007/s00405-014-3354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-014-3354-2

Keywords

Navigation