Skip to main content

Advertisement

Log in

3D bioprinting: a review and potential applications for Mohs micrographic surgery

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Mohs Micrographic Surgery (MMS) is effective for treating common cutaneous malignancies, but complex repairs may often present challenges for reconstruction. This paper explores the potential of three-dimensional (3D) bioprinting in MMS, offering superior outcomes compared to traditional methods. 3D printing technologies show promise in advancing skin regeneration and refining surgical techniques in dermatologic surgery. A PubMed search was conducted using the following keywords: “Three-dimensional bioprinting” OR “3-D printing” AND “Mohs” OR “Mohs surgery” OR “Surgery.” Peer-reviewed English articles discussing medical applications of 3D bioprinting were included, while non-peer-reviewed and non-English articles were excluded. Patients using 3D MMS models had lower anxiety scores (3.00 to 1.7, p < 0.0001) and higher knowledge assessment scores (5.59 or 93.25% correct responses), indicating better understanding of their procedure. Surgical residents using 3D models demonstrated improved proficiency in flap reconstructions (p = 0.002) and knowledge assessment (p = 0.001). Additionally, 3D printing offers personalized patient care through tailored surgical guides and anatomical models, reducing intraoperative time while enhancing surgical. Concurrently, efforts in tissue engineering and regenerative medicine are being explored as potential alternatives to address organ donor shortages, eliminating autografting needs. However, challenges like limited training and technological constraints persist. Integrating optical coherence tomography with 3D bioprinting may expedite grafting, but challenges remain in pre-printing grafts for complex cases. Regulatory and ethical considerations are paramount for patient safety, and further research is needed to understand long-term effects and cost-effectiveness. While promising, significant advancements are necessary for full utilization in MMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Leslie DF, Greenway HT (1991) Mohs Micrographic surgery for skin cancer. Australas J Dermatol 32(3):159–164. https://doi.org/10.1111/j.1440-0960.1991.tb01783.x

    Article  CAS  PubMed  Google Scholar 

  2. Murray PM (2004) Soft tissue sarcoma of the upper extremity. Hand Clin 20(3):325–333. https://doi.org/10.1016/j.hcl.2004.03.007

    Article  PubMed  Google Scholar 

  3. Muzic JG, Schmitt AR, Wright AC et al (2017) Incidence and trends of basal cell carcinoma and cutaneous squamous cell carcinoma: a Population-based study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin Proc 92(6):890–898. https://doi.org/10.1016/j.mayocp.2017.02.015

    Article  PubMed  Google Scholar 

  4. Asgari MM, Olson JM, Alam M (2012) Needs Assessment for Mohs Micrographic surgery. Dermatol Clin 30(1):167–175. https://doi.org/10.1016/j.det.2011.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sahai S, Walling HW (2012) Factors predictive of complex Mohs surgery cases. J Dermatol Treat 23(6):421–427. https://doi.org/10.3109/09546634.2011.579083

    Article  Google Scholar 

  6. Kontos AP, Qian Z, Urato NS, Hassanein A, Proper SA (2009) AlloDerm grafting for large wounds after Mohs micrographic surgery. Dermatol Surg off Publ Am Soc Dermatol Surg Al 35(4):692–698. https://doi.org/10.1111/j.1524-4725.2009.01123.x

    Article  CAS  Google Scholar 

  7. Lee V, Singh G, Trasatti JP et al (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484. https://doi.org/10.1089/ten.TEC.2013.0335

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Xiong Y, Chen J et al (2019) Three Dimensional Printing Bilayer membrane Scaffold promotes Wound Healing. Front Bioeng Biotechnol 7:348. https://doi.org/10.3389/fbioe.2019.00348

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ishack S, Khachemoune A (2022) Future prospects in 3-dimensional (3D) technology and Mohs micrographic surgery. J Dermatol Treat 33(6):2810–2812. https://doi.org/10.1080/09546634.2022.2080171

    Article  Google Scholar 

  10. Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL (2016) 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication 9(1):015006. https://doi.org/10.1088/1758-5090/9/1/015006

    Article  CAS  PubMed  Google Scholar 

  11. Thomas CN, Mavrommatis S, Schroder LK, Cole PA (2022) An overview of 3D printing and the orthopaedic application of patient-specific models in malunion surgery. Injury 53(3):977–983. https://doi.org/10.1016/j.injury.2021.11.019

    Article  PubMed  Google Scholar 

  12. Zhou W, Xia T, Liu Y et al (2020) Comparative study of sacroiliac screw placement guided by 3D-printed template technology and X-ray fluoroscopy. Arch Orthop Trauma Surg 140(1):11–17. https://doi.org/10.1007/s00402-019-03207-6

    Article  PubMed  Google Scholar 

  13. Minto J, Zhou X, Osborn J, Zhang LG, Sarkar K, Rao RD (2020) Three-Dimensional Printing: a Catalyst for a changing Orthopaedic Landscape. JBJS Rev 8(2):e0076. https://doi.org/10.2106/JBJS.RVW.19.00076

    Article  PubMed  Google Scholar 

  14. Gupta R, Jonakin H, Reich H et al (2021) Improving knowledge of Mohs surgery in patients and families with 3D-printed models and video animation: a survey-based cohort study. J Am Acad Dermatol 85(5):1349–1350. https://doi.org/10.1016/j.jaad.2020.09.049

    Article  PubMed  Google Scholar 

  15. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  16. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  17. Huang J, Zhou X, Ai S, Chen J, Yang J, Sun D (2022) Preoperative 3D Reconstruction Model in Slow Mohs Surgery for Dermatofibrosarcoma Protuberans. Comput Intell Neurosci. ;2022((Huang J.; Zhou X.; Yang J.; Sun D.) Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China):5509129. https://doi.org/10.1155/2022/5509129

  18. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926. https://doi.org/10.1126/science.1226340

    Article  CAS  PubMed  Google Scholar 

  19. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139. https://doi.org/10.1016/j.biomaterials.2012.09.035

    Article  CAS  PubMed  Google Scholar 

  20. Huang Y, Zhang XF, Gao G, Yonezawa T, Cui X (2017) 3D bioprinting and the current applications in tissue engineering. Biotechnol J 12(8). https://doi.org/10.1002/biot.201600734

  21. Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W (2013) Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication 5(1):015013. https://doi.org/10.1088/1758-5082/5/1/015013

    Article  CAS  PubMed  Google Scholar 

  22. Lee W, Debasitis JC, Lee VK et al (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595. https://doi.org/10.1016/j.biomaterials.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  23. Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434. https://doi.org/10.1016/j.biotechadv.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  24. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S (2016) 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol 40:103–112. https://doi.org/10.1016/j.copbio.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  25. Shapira A, Dvir T (2021) 3D tissue and Organ Printing-Hope and reality. Adv Sci Weinh Baden-Wurtt Ger 8(10):2003751. https://doi.org/10.1002/advs.202003751

    Article  CAS  Google Scholar 

  26. Bülow A, Schäfer B, Beier JP (2023) Three-dimensional bioprinting in soft tissue Engineering for Plastic and reconstructive surgery. Bioeng Basel Switz 10(10):1232. https://doi.org/10.3390/bioengineering10101232

    Article  CAS  Google Scholar 

  27. Liu D, Fu J, Fan H et al (2018) Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: a case report. J Bone Oncol 12:78–82. https://doi.org/10.1016/j.jbo.2018.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lal H, Patralekh MK (2018) 3D printing and its applications in orthopaedic trauma: a technological marvel. J Clin Orthop Trauma 9(3):260–268. https://doi.org/10.1016/j.jcot.2018.07.022

    Article  PubMed  PubMed Central  Google Scholar 

  29. López-Torres II, Sanz-Ruíz P, León-Román VE, Navarro-García F, Priego-Sánchez R, Vaquero-Martín J (2019) 3D printing in experimental orthopaedic surgery: do it yourself. Eur J Orthop Surg Traumatol Orthop Traumatol 29(5):967–973. https://doi.org/10.1007/s00590-019-02415-5

    Article  Google Scholar 

  30. Al Najjar M, Mehta SS, Monga P (2018) Three dimensional scapular prints for evaluating glenoid morphology: an exploratory study. J Clin Orthop Trauma 9(3):230–235. https://doi.org/10.1016/j.jcot.2018.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aranda JL, Jiménez MF, Rodríguez M, Varela G (2015) Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction. Eur J Cardio-Thorac Surg off J Eur Assoc Cardio-Thorac Surg 48(4):e92–94. https://doi.org/10.1093/ejcts/ezv265

    Article  Google Scholar 

  32. The utility of (2017) 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine 26(4):513–518. https://doi.org/10.3171/2016.9.SPINE16371

    Article  Google Scholar 

  33. Sun L, Liu H, Xu C, Yan B, Yue H, Wang P (2020) 3D printed navigation template-guided minimally invasive percutaneous plate osteosynthesis for distal femoral fracture: a retrospective cohort study. Injury 51(2):436–442. https://doi.org/10.1016/j.injury.2019.10.086

    Article  PubMed  Google Scholar 

  34. Matsumoto JS, Morris JM, Foley TA et al (2015) Three-dimensional physical modeling: applications and experience at Mayo Clinic. Radiogr Rev Publ Radiol Soc N Am Inc 35(7):1989–2006. https://doi.org/10.1148/rg.2015140260

    Article  Google Scholar 

  35. Bergquist JR, Morris JM, Matsumoto JM, Schiller HJ, Kim BD (2019) 3D printed modeling contributes to reconstruction of complex chest wall instability. Trauma Case Rep 22:100218. https://doi.org/10.1016/j.tcr.2019.100218

    Article  PubMed  PubMed Central  Google Scholar 

  36. Saini G, Segaran N, Mayer JL, Saini A, Albadawi H, Oklu R (2021) Applications of 3D bioprinting in tissue Engineering and Regenerative Medicine. J Clin Med 10(21):4966. https://doi.org/10.3390/jcm10214966

    Article  PubMed  PubMed Central  Google Scholar 

  37. Varkey M, Visscher DO, van Zuijlen PPM, Atala A, Yoo JJ (2019) Skin bioprinting: the future of burn wound reconstruction? Burns Trauma 7:4. https://doi.org/10.1186/s41038-019-0142-7

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schubert C, van Langeveld MC, Donoso LA (2014) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 98(2):159–161. https://doi.org/10.1136/bjophthalmol-2013-304446

    Article  PubMed  Google Scholar 

  39. Cui X, Boland T, D’Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155. https://doi.org/10.2174/187221112800672949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. DeMarco DV, Ellis J (2018) 3D modeling and Mohs surgery: a Novel Approach to Medical and Patient Education. Dermatol Surg off Publ Am Soc Dermatol Surg Al 44(12):1646–1647. https://doi.org/10.1097/DSS.0000000000001480

    Article  CAS  Google Scholar 

  41. Pujol S, Baldwin M, Nassiri J, Kikinis R, Shaffer K (2016) Using 3D modeling techniques to enhance teaching of difficult anatomical concepts. Acad Radiol 23(4):507–516. https://doi.org/10.1016/j.acra.2015.12.012

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen S, Pan Z, Wu Y et al (2017) The role of three-dimensional printed models of skull in anatomy education: a randomized controlled trail. Sci Rep 7(1):575. https://doi.org/10.1038/s41598-017-00647-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chan HHL, Haerle SK, Daly MJ et al (2021) An integrated augmented reality surgical navigation platform using multi-modality imaging for guidance. PLoS ONE 16(4):e0250558. https://doi.org/10.1371/journal.pone.0250558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lerner JL, Vishwanath N, Borrelli MR, Rao V, Crozier J, Woo AS (2023) A Cost-effective, 3D printed Simulation Model facilitates Learning of Bilobed and Banner flaps for Mohs Nasal Reconstruction: a pilot study. Plast Reconstr Surg Published Online September 1. https://doi.org/10.1097/PRS.0000000000011037

  45. Ng KW, Hutmacher DW (2006) Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices. Biomaterials 27(26):4591–4598. https://doi.org/10.1016/j.biomaterials.2006.04.020

    Article  CAS  PubMed  Google Scholar 

  46. Michael S, Sorg H, Peck CT et al (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8(3):e57741. https://doi.org/10.1371/journal.pone.0057741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weng T, Zhang W, Xia Y et al (2021) 3D bioprinting for skin tissue engineering: current status and perspectives. J Tissue Eng 12:20417314211028574. https://doi.org/10.1177/20417314211028574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tan B, Gan S, Wang X, Liu W, Li X (2021) Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 9(27):5385–5413. https://doi.org/10.1039/d1tb00172h

    Article  CAS  PubMed  Google Scholar 

  49. Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A, Rybka JD, Gornowicz-Porowska J (2022) 3D bioprinting in skin related research: recent achievements and application perspectives. ACS Synth Biol 11(1):26–38. https://doi.org/10.1021/acssynbio.1c00547

    Article  CAS  PubMed  Google Scholar 

  50. Yang S, Chen Q, Wang L, Xu M (2023) In situ defect detection and feedback control with three-dimensional extrusion-based bioprinter-associated optical coherence tomography. Int J Bioprinting 9(1):624. https://doi.org/10.18063/ijb.v9i1.624

    Article  CAS  Google Scholar 

  51. Jain M, Chang SW, Singh K et al (2024) High-resolution full-field optical coherence tomography microscope for the evaluation of freshly excised skin specimens during Mohs surgery: a feasibility study. J Biophotonics 17(1):e202300275. https://doi.org/10.1002/jbio.202300275

    Article  CAS  PubMed  Google Scholar 

  52. Mason J, Visintini S, Quay T (2016) An Overview of Clinical Applications of 3-D Printing and Bioprinting. In: CADTH Issues in Emerging Health Technologies. CADTH Horizon Scans. Canadian Agency for Drugs and Technologies in Health; Accessed February 23, 2024. http://www.ncbi.nlm.nih.gov/books/NBK542711/

  53. Ricci G, Gibelli F, Sirignano A (2023) Three-Dimensional Bioprinting of Human organs and tissues: Bioethical and Medico-Legal implications examined through a scoping review. Bioeng Basel Switz 10(9):1052. https://doi.org/10.3390/bioengineering10091052

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery for their ongoing support.

Funding

The authors have no funding sources to disclose.

Author information

Authors and Affiliations

Authors

Contributions

AP initiated the topic idea and organized the paper structure. AP, YA, SK, and SL contributed to writing the manuscript. JL and KN thoroughly reviewed the final version of the paper to provide us with constructive feedback, preparing the paper for final submission.

Corresponding author

Correspondence to Anika Pulumati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no financial or non-financial conflicts of interest to disclose.

Ethical approval

IRB approval was not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulumati, A., Algarin, Y.A., Kim, S. et al. 3D bioprinting: a review and potential applications for Mohs micrographic surgery. Arch Dermatol Res 316, 147 (2024). https://doi.org/10.1007/s00403-024-02893-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00403-024-02893-6

Keywords

Navigation