Skip to main content

Advertisement

Log in

The potential cutaneous benefits of edible bird’s nest

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Edible bird’s nest (EBN) is composed of the solidified saliva of swiftlet birds. EBN has been extremely popular in Asian culture for centuries. They are often consumed as a delicacy in the form of bird’s nest soup and are believed to have numerous skin benefits. In light of EBN’s growing popularity and significant cultural importance, we aim provide a comprehensive review of EBN’s potential dermatologic benefits and role in photoaging, anti-inflammation, wound healing, skin barrier enhancement, and skin whitening. While in vitro, in vivo, and preliminary clinical trial results are promising, there is a need for future human clinical research to further validate these findings and establish EBN’s efficacy and safety for dermatologic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the evidence presented in this article is accessible from public databases such as PubMed.

References

  1. Marcone MF (2005) Characterization of the edible bird’s nest the “Caviar of the East.” Food Res Int. https://doi.org/10.1016/j.foodres.2005.02.008

    Article  Google Scholar 

  2. Chok KC, Ng MG, Ng KY, Koh RY, Tiong YL, Chye SM (2021) Edible bird’s nest: recent updates and industry insights based on laboratory findings. Front Pharmacol 12:746656. https://doi.org/10.3389/fphar.2021.746656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siegel DM, Jakus J, Hooper D (2019) Topical natural products in managing dermatologic conditions: observations and recommendations. Cutis 103(4):233-236.e1-e2

    PubMed  Google Scholar 

  4. Lee TH, Wani WA, Lee CH, Cheng KK, Shreaz S, Wong S, Hamdan N, Azmi NA (2021) Edible bird’s nest: the functional values of the prized animal-based bioproduct from Southeast Asia—a review. Front Pharmacol 12:626233. https://doi.org/10.3389/fphar.2021.626233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lim J, Wong M, Chan MY, Tan AM, Rajalingam V, Lim LP, Lou J, Tan CL (2006) Use of complementary and alternative medicine in paediatric oncology patients in Singapore. Ann Acad Med Singap 35(11):753–758

    Article  PubMed  Google Scholar 

  6. Chow WH, Chang P, Lee SC, Wong A, Shen HM, Verkooijen HM (2010) Complementary and alternative medicine among Singapore cancer patients. Ann Acad Med Singap 39(2):129–135

    Article  PubMed  Google Scholar 

  7. Wong RS (2013) Edible bird’s nest: food or medicine? Chin J Integr Med 19(9):643–649. https://doi.org/10.1007/s11655-013-1563-y

    Article  ADS  PubMed  Google Scholar 

  8. Chye SM, Tai SK, Koh RY, Ng KY (2017) A mini review on medicinal effects of edible bird’s nest. Lett Health Biol Sci. 2(1):65–67. https://doi.org/10.15436/2475-6245.17.016

    Article  Google Scholar 

  9. Eunson Hwang SWP, Yang J-E (2020) Anti-aging, anti-inflammatory, and wound-healing activities of edible bird’s nest in human skin keratinocytes and fibroblasts. Pharmacogn Mag 69:336–342. https://doi.org/10.4103/pm.pm_326_19

    Article  CAS  Google Scholar 

  10. Wang D, Shimamura N, Mochizuki M, Nakahara T, Sunada K, Xiao L (2023) Enzyme-digested edible bird’s nest (EBND) prevents UV and arid environment-induced cellular oxidative stress cell death and DNA damage in human skin keratinocytes and three-dimensional epithelium equivalents. Antioxidants (Basel). https://doi.org/10.3390/antiox12030609

    Article  PubMed  PubMed Central  Google Scholar 

  11. Masuda S, Makioka-Itaya Y, Ijichi T, Tsukahara T (2022) Edible bird’s nest extract downregulates epidermal apoptosis and helps reduce damage by ultraviolet radiation in skin of hairless mice. J Clin Biochem Nutr 70(1):33–36. https://doi.org/10.3164/jcbn.21-54

    Article  PubMed  Google Scholar 

  12. Kim OK, Kim D, Lee M, Park SH, Yamada W, Eun S, Lee J (2021) Standardized edible bird’s nest extract prevents UVB irradiation-mediated oxidative stress and photoaging in the skin. Antioxidants (Basel). https://doi.org/10.3390/antiox10091452

    Article  PubMed  PubMed Central  Google Scholar 

  13. Park S, Kim IS, Park SY, Seo SA, Yang JE, Hwang E (2022) The protective effect of edible bird’s nest against the immune-senescence process of UVB-irradiated hairless mice. Photochem Photobiol 98(4):949–957. https://doi.org/10.1111/php.13564

    Article  CAS  PubMed  Google Scholar 

  14. Lai QWS, Fan Q, Zheng BZ, Chen Y, Dong TT, Tsim KWK (2022) Edible bird’s nest, an Asian health food supplement, possesses anti-inflammatory responses in restoring the symptoms of atopic dermatitis: an analysis of signaling cascades. Front Pharmacol 13:941413. https://doi.org/10.3389/fphar.2022.941413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sandi DAD, Musfirah Y (2019) Wound healing effects of edible bird’s nests oinment (Aerodramus fuciphagus) in alloxan-induced male rats. Trad Med J. 24(1):33–39. https://doi.org/10.22146/mot.39072

    Article  Google Scholar 

  16. Lai QWS, Guo MSS, Wu KQ, Liao Z, Guan D, Dong TT, Tong P, Tsim KWK (2021) Edible bird’s nest, an Asian health food supplement, possesses moisturizing effect by regulating expression of filaggrin in skin keratinocyte. Front Pharmacol 12:685982. https://doi.org/10.3389/fphar.2021.685982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sandi DAD, Susiani EF (2021) Formulation of edible bird’s nest (Aerodramus fuciphagus) from central Kalimantan as skin whitening and moisturizing cream. J Pharm Bioallied Sci 13(1):39–45. https://doi.org/10.4103/jpbs.JPBS_276_19

    Article  CAS  PubMed  Google Scholar 

  18. Chan GKL, Wong ZCF, Lam KYC, Cheng LKW, Lin H, Zhang LM, Dong TT, Tsim KWK (2015) Edible bird’s nest, an Asian health food supplement, possesses skin lightening activities: identification of N-acetylneuraminic acid as active ingredient. J Cosmet Dermatol Sci Appl. 5:262–274. https://doi.org/10.4236/jcdsa.2015.54032

    Article  CAS  Google Scholar 

  19. Fan Q, Lian J, Liu X, Zou F, Wang X, Chen M (2021) A study on the skin whitening activity of digesta from edible bird’s nest: a mucin glycoprotein. Gels. https://doi.org/10.3390/gels8010024

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wong ZCF, Chan GKL, Wu KQY, Poon KKM, Chen Y, Dong TTX, Tsim KWK (2018) Complete digestion of edible bird’s nest releases free N-acetylneuraminic acid and small peptides: an efficient method to improve functional properties. Food Funct 9(10):5139–5149. https://doi.org/10.1039/c8fo00991k

    Article  CAS  PubMed  Google Scholar 

  21. Shuko Terazawa HS (2020) Keratinocyte proliferative and wound healing effects of edible bird’s nest extract on human skin. Int J Biomed Sci 16(4):43–51

    Article  Google Scholar 

  22. Fucui Ma DL (2012) Sketch of the edible bird’s nest and its important bioactivities. Food Res Int 48:559–567. https://doi.org/10.1016/j.foodres.2012.06.001

    Article  CAS  Google Scholar 

  23. Kim HM, Lee YM, Kim EH, Eun SW, Sung HK, Ko H, Youn SJ, Choi Y, Yamada W, Shin SM (2022) Anti-wrinkle efficacy of edible bird’s nest extract: a randomized, double-blind, placebo-controlled, comparative study. Front Pharmacol 13:843469. https://doi.org/10.3389/fphar.2022.843469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gromkowska-Kępka KJ, Puścion-Jakubik A, Markiewicz-Żukowska R, Socha K (2021) The impact of ultraviolet radiation on skin photoaging—review of in vitro studies. J Cosmet Dermatol 20(11):3427–3431. https://doi.org/10.1111/jocd.14033

    Article  PubMed  PubMed Central  Google Scholar 

  25. Varani J, Spearman D, Perone P, Fligiel SE, Datta SC, Wang ZQ, Shao Y, Kang S, Fisher GJ, Voorhees JJ (2001) Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro. Am J Pathol 158(3):931–942. https://doi.org/10.1016/s0002-9440(10)64040-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khan AQ, Travers JB, Kemp MG (2018) Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ Mol Mutagen 59(5):438–460. https://doi.org/10.1002/em.22176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Pontén J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 88(22):10124–10128. https://doi.org/10.1073/pnas.88.22.10124

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. https://doi.org/10.1089/ars.2011.3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Popko K, Gorska E, Stelmaszczyk-Emmel A, Plywaczewski R, Stoklosa A, Gorecka D, Pyrzak B, Demkow U (2010) Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res 15(Suppl 2):120–122. https://doi.org/10.1186/2047-783x-15-s2-120

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shimada Y, Takehara K, Sato S (2004) Both Th2 and Th1 chemokines (TARC/CCL17, MDC/CCL22, and Mig/CXCL9) are elevated in sera from patients with atopic dermatitis. J Dermatol Sci 34(3):201–208. https://doi.org/10.1016/j.jdermsci.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  31. Palmer CN et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38(4):441–446. https://doi.org/10.1038/ng1767

    Article  CAS  PubMed  Google Scholar 

  32. Kong YC, Keung WM, Yip TT, Ko KM, Tsao SW, Ng MH (1987) Evidence that epidermal growth factor is present in swiftlet’s (Collocalia) nest. Comp Biochem Physiol B 87(2):221–226. https://doi.org/10.1016/0305-0491(87)90133-7

    Article  CAS  PubMed  Google Scholar 

  33. Shin SH, Koh YG, Lee WG, Seok J, Park KY (2023) The use of epidermal growth factor in dermatological practice. Int Wound J 20(6):2414–2423. https://doi.org/10.1111/iwj.14075

    Article  PubMed  Google Scholar 

  34. Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V (2017) Research techniques made simple: analysis of collective cell migration using the wound healing assay. J Invest Dermatol 137(2):e11–e16. https://doi.org/10.1016/j.jid.2016.11.020

    Article  CAS  PubMed  Google Scholar 

  35. Liang GH, Weber CR (2014) Molecular aspects of tight junction barrier function. Curr Opin Pharmacol 19:84–89. https://doi.org/10.1016/j.coph.2014.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Volksdorf T et al (2017) Tight junction proteins claudin-1 and occludin are important for cutaneous wound healing. Am J Pathol 187(6):1301–1312. https://doi.org/10.1016/j.ajpath.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  37. Frenkel JS (2014) The role of hyaluronan in wound healing. Int Wound J 11(2):159–163. https://doi.org/10.1111/j.1742-481X.2012.01057.x

    Article  PubMed  Google Scholar 

  38. Kim Y, Lim KM (2021) Skin barrier dysfunction and filaggrin. Arch Pharm Res 44(1):36–48. https://doi.org/10.1007/s12272-021-01305-x

    Article  CAS  PubMed  Google Scholar 

  39. Markiewicz A, Sigorski D, Markiewicz M, Owczarczyk-Saczonek A, Placek W (2021) Caspase-14-from biomolecular basics to clinical approach. A review of available data. Int J Mol Sci. https://doi.org/10.3390/ijms22115575

    Article  PubMed  PubMed Central  Google Scholar 

  40. De Benedetto A et al (2011) Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 127(3):773-86.e1–7. https://doi.org/10.1016/j.jaci.2010.10.018

    Article  CAS  PubMed  Google Scholar 

  41. Kim BE, Leung DYM (2018) Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res 10(3):207–215. https://doi.org/10.4168/aair.2018.10.3.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, Feng L, Liu L, Wang F, Ouyang L, Zhang L, Hu X, Wang G (2021) Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 224:113744. https://doi.org/10.1016/j.ejmech.2021.113744

    Article  CAS  PubMed  Google Scholar 

  43. Pillaiyar T, Manickam M, Jung SH (2017) Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal 40:99–115. https://doi.org/10.1016/j.cellsig.2017.09.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JW came up with the idea for the article, performed the literature search, and wrote the main manuscript. All authors helped to critically revise the manuscript. JJ supervised the project.

Corresponding author

Correspondence to Jared Jagdeo.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Patel, P., Mineroff, J. et al. The potential cutaneous benefits of edible bird’s nest. Arch Dermatol Res 316, 91 (2024). https://doi.org/10.1007/s00403-024-02824-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00403-024-02824-5

Keywords

Navigation