Skip to main content
Log in

Bone filling decreases donor site morbidity after anterior cruciate ligament reconstruction with bone–patellar tendon–bone autografts

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Purpose

Bone–patellar tendon–bone (BTB) autograft remains the most widely used graft source for anterior cruciate ligament reconstruction (ACLR). The drawback associated with BTB is increased donor-site morbidity, such as anterior knee pain. The purpose of this study was to evaluate and compare anterior knee pain after refilling the patella bony defect with bone substitute.

Methods

This is a retrospective analysis of consecutive patients who underwent BTB ACLR at a single institution between January 2015 and December 2020. The cohort was divided into two groups; one in which the patellar bony defect was refilled with bone substitute (Bone Graft group) and another in which this the bony defects were not treated (No Bone Graft group). Demographic variables, reported anterior knee pain, visual analog scale (VAS) score, complications, re-operation, and patient reported outcome measures, such as the IKDC, LYSHOLM and SF-12 scores, were compared between groups.

Results

A total of 286 patients who underwent BTB ACLR were included. The No Bone Graft group included 88 (30.7%) patients and the Bone Graft group included 198 (69.3%) patients. The Bone Graft group had less anterior knee pain at last clinic follow up (33.3% vs. 51.1% p = 0.004) as well as lower VAS anterior knee pain scores (2.18 vs. 3.13, p = 0.004). The Bone Graft group had lower complications rates (21.7% vs 34.1, p = 0.027). No differences were found in the LYSHOLM, IKDC, and SF-12 scores.

Conclusion

Bone refilling in BTB ACLR significantly reduces prevalence and severity of anterior knee pain. Larger randomized trials are needed to confirm the benefits of bone refilling in ACLR patients.

Level of evidence

Retrospective study—III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van Dijck RAHE, Saris DB, Willems JW, Fievez AWFM (2008) Additional surgery after anterior cruciate ligament reconstruction: can we improve technical aspects of the initial procedure? Arthrosc J Arthrosc Relat Surg 24:88–95. https://doi.org/10.1016/j.arthro.2007.08.012

    Article  Google Scholar 

  2. Baawa-Ameyaw J, Plastow R, Begum FA et al (2021) Current concepts in graft selection for anterior cruciate ligament reconstruction. EFORT Open Rev 6:808–815. https://doi.org/10.1302/2058-5241.6.210023

    Article  PubMed  PubMed Central  Google Scholar 

  3. Buerba R, Boden S, Lesniak B (2021) Graft selection in contemporary anterior cruciate ligament reconstruction. JAAOS Glob Res Rev 5:1–10. https://doi.org/10.5435/JAAOSGlobal-D-21-00230

    Article  Google Scholar 

  4. Okoroha KR, Keller RA, Jung EK et al (2016) Pain assessment after anterior cruciate ligament reconstruction. Orthop J Sport Med 4:232596711667492. https://doi.org/10.1177/2325967116674924

    Article  Google Scholar 

  5. Hardy A, Casabianca L, Andrieu K et al (2017) Complications following harvesting of patellar tendon or hamstring tendon grafts for anterior cruciate ligament reconstruction: systematic review of literature. Orthop Traumatol Surg Res 103:S245–S248. https://doi.org/10.1016/j.otsr.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  6. Cruz CA, Goldberg D, Wake J et al (2020) Comparing bone-tendon autograft with bone-tendon–bone autograft for ACL reconstruction: a matched-cohort analysis. Orthop J Sport Med 8:1–6. https://doi.org/10.1177/2325967120970224

    Article  Google Scholar 

  7. Kosanović M, Komadina R, Batista M (1998) Patella fractures associated with injuries of the knee ligament. Arch Orthop Trauma Surg 117:108–109. https://doi.org/10.1007/BF00703456

    Article  PubMed  Google Scholar 

  8. Adam F, Pape D, Kohn D, Seil R (2002) Length of the patellar tendon after anterior cruciate ligament reconstruction with patellar tendon autograft: a prospective clinical study using Roentgen stereometric analysis. Arthroscopy 18:859–864. https://doi.org/10.1053/jars.2002.36121

    Article  PubMed  Google Scholar 

  9. Mayr R, Rosenberger R, Agraharam D et al (2012) Revision anterior cruciate ligament reconstruction: an update. Arch Orthop Trauma Surg 132:1299–1313. https://doi.org/10.1007/s00402-012-1552-1

    Article  CAS  PubMed  Google Scholar 

  10. Yuan BJ, Lewallen DG, Hanssen AD (2015) Porous metal acetabular components have a low rate of mechanical failure in THA after operatively treated acetabular fracture. Clin Orthop Relat Res 473:536–542. https://doi.org/10.1007/s11999-014-3852-y

    Article  PubMed  Google Scholar 

  11. Zhang H, Yang L, Yang X et al (2019) Demineralized bone matrix carriers and their clinical applications: an overview. Orthop Surg 11:725–737. https://doi.org/10.1111/os.12509

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sharkey NA, Donahue SW, Smith TS et al (1997) Patellar strain and patellofemoral contact after bone–patellar tendon- bone harvest for anterior cruciate ligament reconstruction. Arch Phys Med Rehabil 78:256–263. https://doi.org/10.1016/S0003-9993(97)90030-7

    Article  CAS  PubMed  Google Scholar 

  13. Tsuda E, Okamura Y, Ishibashi Y et al (2001) Techniques for reducing anterior knee symptoms after anterior cruciate ligament reconstruction using a bone–patellar tendon–bone autograft. Am J Sports Med 29:450–456. https://doi.org/10.1177/03635465010290041201

    Article  CAS  PubMed  Google Scholar 

  14. Webster KE, Feller JA (2014) Use of the short form health surveys as an outcome measure for anterior cruciate ligament reconstruction. Knee Surg Sport Traumatol Arthrosc 22:1142–1148. https://doi.org/10.1007/s00167-013-2520-1

    Article  Google Scholar 

  15. Briggs KK, Lysholm J, Tegner Y et al (2009) The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med 37:890–897. https://doi.org/10.1177/0363546508330143

    Article  PubMed  Google Scholar 

  16. Shelbourne KD, Gray T (2009) Minimum 10-year results after anterior cruciate ligament reconstruction: How the loss of normal knee motion compounds other factors related to the development of osteoarthritis after surgery. Am J Sports Med 37:471–480. https://doi.org/10.1177/0363546508326709

    Article  PubMed  Google Scholar 

  17. Kohn D, Sander-Beuermann A (1994) Donor-site morbidity after harvest of a bone-tendon–bone patellar tendon autograft. Knee Surg Sport Traumatol Arthrosc 2:219–223. https://doi.org/10.1007/BF01845591

    Article  CAS  Google Scholar 

  18. Adriani E, Mariani PP, Maresca G, Santori N (1995) Healing of the patellar tendon after harvesting of its mid-third for anterior cruciate ligament reconstruction and evolution of the unclosed donor site defect. Knee Surg Sport Traumatol Arthrosc 3:138–143. https://doi.org/10.1007/BF01565472

    Article  CAS  Google Scholar 

  19. Brandsson S, Faxén E, Eriksson BI et al (1998) Closing patellar tendon defects after anterior cruciate ligament reconstruction: absence of any benefit. Knee Surg Sport Traumatol Arthrosc 6:82–87. https://doi.org/10.1007/s001670050077

    Article  CAS  Google Scholar 

  20. Schandl K, Horváthy DB, Doros A et al (2016) Bone-Albumin filling decreases donor site morbidity and enhances bone formation after anterior cruciate ligament reconstruction with bone–patellar tendon–bone autografts. Int Orthop 40:2097–2104. https://doi.org/10.1007/s00264-016-3246-8

    Article  PubMed  Google Scholar 

  21. Frank RM, Mascarenhas R, Haro M et al (2015) Closure of patellar tendon defect in anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft: systematic review of randomized controlled trials. Arthrosc J Arthrosc Relat Surg 31:329–338. https://doi.org/10.1016/j.arthro.2014.09.004

    Article  Google Scholar 

  22. Hogan DW, Burch MB, Rund JM et al (2021) No difference in complication rates or patient-reported outcomes between bone-patella tendon–bone and quadriceps tendon autograft for anterior cruciate ligament reconstruction. Arthrosc Sport Med Rehabil. https://doi.org/10.1016/j.asmr.2021.10.019

    Article  Google Scholar 

  23. Rousseau R, Labruyere C, Kajetanek C et al (2019) Complications after anterior cruciate ligament reconstruction and their relation to the type of graft: a prospective study of 958 cases. Am J Sports Med 47:2543–2549. https://doi.org/10.1177/0363546519867913

    Article  PubMed  Google Scholar 

  24. Haybäck G, Raas C, Rosenberger R (2021) Failure rates of common grafts used in ACL reconstructions: a systematic review of studies published in the last decade. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-04147-w

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang W, Huang X, Wang S et al (2021) The long-term outcomes of different grafts in anterior cruciate ligament reconstruction: a network meta-analysis. J Orthop Transl 26:16–30. https://doi.org/10.1016/j.jot.2020.03.008

    Article  Google Scholar 

  26. Xie X, Liu X, Chen Z et al (2015) A meta-analysis of bone–patellar tendon–bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 22:100–110. https://doi.org/10.1016/j.knee.2014.11.014

    Article  PubMed  Google Scholar 

  27. Seijas R, Ares O, Catala J et al (2013) Magnetic resonance imaging evaluation of patellar tendon graft remodelling after anterior cruciate ligament reconstruction with or without platelet-rich plasma. J Orthop Surg (Hong Kong) 21:10–14. https://doi.org/10.1177/230949901302100105

    Article  PubMed  Google Scholar 

  28. Orrego M, Larrain C, Rosales J et al (2008) Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthrosc J Arthrosc Relat Surg 24:1373–1380. https://doi.org/10.1016/j.arthro.2008.07.016

    Article  Google Scholar 

  29. Seijas R, Cuscó X, Sallent A et al (2016) Pain in donor site after BTB-ACL reconstruction with PRGF: a randomized trial. Arch Orthop Trauma Surg 136:829–835. https://doi.org/10.1007/s00402-016-2458-0

    Article  PubMed  Google Scholar 

  30. Walters BL, Porter DA, Hobart SJ et al (2018) Effect of intraoperative platelet-rich plasma treatment on postoperative donor site knee pain in patellar tendon autograft anterior cruciate ligament reconstruction: a double-blind randomized controlled trial. Am J Sports Med 46:1827–1835. https://doi.org/10.1177/0363546518769295

    Article  PubMed  Google Scholar 

  31. Rodriguez IA, Growney Kalaf EA, Bowlin GL, Sell SA (2014) Platelet-rich plasma in bone regeneration: engineering the delivery for improved clinical efficacy. Biomed Res Int 2014:1–15. https://doi.org/10.1155/2014/392398

    Article  CAS  Google Scholar 

  32. Kelly A-M (2001) The minimum clinically significant difference in visual analogue scale pain score does not differ with severity of pain. Emerg Med J 18:205–207. https://doi.org/10.1136/emj.18.3.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee JS, Hobden E, Stiell IG, Wells GA (2003) Clinically important change in the visual analog scale after adequate pain control. Acad Emerg Med 10:1128–1130. https://doi.org/10.1111/j.1553-2712.2003.tb00586.x

    Article  PubMed  Google Scholar 

  34. Alghadir A, Anwer S, Iqbal A, Iqbal Z (2018) Test–retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J Pain Res 11:851–856. https://doi.org/10.2147/JPR.S158847

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Ittai Shichman, MD, and David Baruchi, BSc, should be considered equal first authors for this paper.

Funding

No funding was provided for this study.

Author information

Authors and Affiliations

Authors

Contributions

IS and DB and performed the study design and participated in manuscript drafting. GR, AB and MV performed data collection, NA performed statistical analysis and GM conducted the study concept and proofing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ittai Shichman.

Ethics declarations

Conflict of interest

All authors have nothing to disclose.

Ethical approval

The present study was exempt from human-subject review by our Institutional Review Board (IRB).

Informed consent

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shichman, I., Baruchi, D., Rachevsky, G. et al. Bone filling decreases donor site morbidity after anterior cruciate ligament reconstruction with bone–patellar tendon–bone autografts. Arch Orthop Trauma Surg 143, 2565–2572 (2023). https://doi.org/10.1007/s00402-022-04572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-022-04572-5

Keywords

Navigation