Skip to main content
Log in

Structure formation and electrophysical properties of poly(vinylidene fluoride-hexafluoropropylene) copolymer films at low-temperature solution crystallization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The structural and electrophysical characteristics of poly (vinylidene fluoride-hexafluoropropylene) copolymer films with hexafluoropropylene content 8.3 mol%, obtained by low-temperature crystallization from various solvents, have been investigated. X-ray diffraction data indicate that the films crystallized mainly in the α-phase. When acetone is used as a solvent, the degree of crystallinity is the lowest due to the rapid escape of solvent molecules from solution. IR spectroscopic data showed that the amorphous phase of such films is enriched with T3GT3G isomers. This is accompanied by an increase in their high-voltage conductivity. Despite the crystallization mainly in nonpolar α-phase, a domain structure was recorded in the films by piezo force microscopy. Surface structuring processes, accompanied by the displacement of certain attachment chain defects into the surface, have been recorded using IR spectroscopy. The presence of such intrachain defects is confirmed and characterized by high-resolution 19F NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Wang TT, Herbert JM, Glass AM (eds) (1988) The application of ferroelectric polymers. Blackie, Glasgow

    Google Scholar 

  2. Nalva HS (ed) (1995) Ferroelectric polymers – chemistry, physics and applications. Marcel Dekker Inc, New York

    Google Scholar 

  3. Kochervinskii VV (2003) Piezoelectricity in crystalline ferroelectric polymers: polyvinylidene fluoride and its copolymers (a review). Crystallogr Reports 48:649–675. https://doi.org/10.1134/1.1595194

    Article  CAS  Google Scholar 

  4. Kochervinskii VV (2009) New electrostriction materials based on organic polymers: a review. Crystallog Rep 54:1146–1171. https://doi.org/10.1134/S1063774509070062

    Article  CAS  Google Scholar 

  5. Kochervinskii VV (1994) The properties and applications of fluorine-containing polymer films with piezo- and pyro-activity. Rus Chem Rev 63:367–371. https://doi.org/10.1070/RC1994v063n04ABEH00009

    Article  Google Scholar 

  6. Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S, Zhang QM (2009) Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl Phys Lett 94:162901. https://doi.org/10.1063/1.3123001

    Article  CAS  Google Scholar 

  7. Xia W, Zhou Z, Liu Y, Wang Q, Zhang Z (2018) Crystal phase transition dependence of the energy storage performance of poly(vinylidene fluoride) and poly(vinylidene fluoride-hexafluoropropene) copolymers. J Appl Polym Sci 135:46306. https://doi.org/10.1002/app.46306

    Article  CAS  Google Scholar 

  8. Zhu L, Wang Q (2012) Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromol 45:2937–2954. https://doi.org/10.1021/ma2024057

    Article  CAS  Google Scholar 

  9. Li Q, Zhang GZ, Zhang XS, Jiang SL, Zeng YK, Wang Q (2015) Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Adv Mater 27:2236–2241. https://doi.org/10.1002/adma.201405495

    Article  CAS  PubMed  Google Scholar 

  10. Zhang G, Li Q, Gu H, Jiang S, Han K, Gadinski MR, Haque MA, Zhang Q, Wang Q (2015) Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv Mater 27:1450–1454. https://doi.org/10.1002/adma.201404591

    Article  CAS  PubMed  Google Scholar 

  11. Kochervinskii VV (1996) The structure and properties of block poly(vinylidene fluoride) and systems based on it. Russ Chem Rev 65:865–913. https://doi.org/10.1070/RC1996v065n10ABEH000328

    Article  Google Scholar 

  12. Gregorio R, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). J Polym Sci B Polym Phys 32:859–870. https://doi.org/10.1002/polb.1994.090320509

    Article  CAS  Google Scholar 

  13. Tanaka H, Yukawa H, Nishi T (1988) Effect of crystallization condition on the ferroelectric phase transition in vinylidene fluoride/trifluoroethylene (VF2/F3E) copolymers. Macromol 21:2469–2474. https://doi.org/10.1021/ma00186a028

    Article  CAS  Google Scholar 

  14. Tazaki M, Wada R, Okabe M, Homma T (2000) Inverse gas chromatographic observation of thermodynamic interaction between poly(vinylidene fluoride) and organic solvents. Polym Bull 44:93–100. https://doi.org/10.1007/s002890050578

    Article  CAS  Google Scholar 

  15. Chapiro A, Mankowski Z, Schmitt N (1982) Unusual swelling behavior of films of polyvinyl- and polyvinylidene/fluorides in various solvents. J Polym Sci Polym Chem Ed 20:1791–1796. https://doi.org/10.1002/pol.1982.170200712

    Article  CAS  Google Scholar 

  16. Kochervinskii VV, Kozlova NV, Ponkratov DO, Korlyukov AA, Kiselev DA, Ilina TS, Terekhova YuS, Shmakova NA, Khorokhorin AI (2019) An effect of ionic liquids on polymorph transformations in polyvinylidenefluoride at its crystallization from solution, Colloid Polym. Sci 297:1275–1286. https://doi.org/10.1007/s00396-019-04549-8

    Article  CAS  Google Scholar 

  17. Latour M, Abo Dorro N, Galigne JL (1984) Far-infrared and x-ray studies on poled semicrystalline poly(vinylidene fluoride). J Polym Sci Polym Phys Ed 22:345–356. https://doi.org/10.1002/pol.1984.180220302

    Article  CAS  Google Scholar 

  18. Lando JB, Doll WW (1968) The polymorphism of poly(vinylidene fluoride). I. The effect of head-to-head structure, Journal of Macromolecular Science, Part B 2:205–218. https://doi.org/10.1080/00222346808212449

    Article  CAS  Google Scholar 

  19. Takahashi Y, Matsubara Y, Tadokoro H (1982) Mechanisms for crystal phase transformations by heat treatment and molecular motion in poly(viny1idene fluoride). Macromol 15:334–338. https://doi.org/10.1021/ma00230a026

    Article  CAS  Google Scholar 

  20. Kochervniskii VV, Astakhov VA, Bedin SA, Malyshkina IA, Shmakova NA, Korlyukov AA, Buzin MI, Volkov VV (2020) Peculiarities of structure and dielectric relaxation in ferroelectric vinylidene fluoride-tetrafluoroethylene copolymer at different crystallization conditions, Colloid Polym. Sci 298:1169–1178. https://doi.org/10.1007/s00396-020-04691-8

    Article  CAS  Google Scholar 

  21. Kochervinskii VV, Kiselev DA, Malinkovich MD, Pavlov AS, Kozlova NV, Shmakova NA (2014) Effect of the structure of a ferroelectric vinylidene fluoride-tetrafluoroethylene copolymer on the characteristics of a local piezoelectric response. Polym Sci Ser A 56:48–62. https://doi.org/10.1134/S0965545X14010064

    Article  CAS  Google Scholar 

  22. Michels JJ, Dehsari HS, Abolhasani MM, Asadi K. (2022) 10 - liquid structuring in fluoropolymer solutions induced by water. In: Asadi K. (ed) Woodhead Publishing series in electronic and optical materials, Organic ferroelectric materials and applications, Woodhead Publishing, pp 357–373. https://doi.org/10.1016/B978-0-12-821551-7.00015-4

  23. Sasabe H, Saito S, Asahina M, Kakutani H (1969) Dielectric relaxations in poly(vinylidene fluoride), J. Polym. Sci. A-2 Polym. Phys 7:1405–1414. https://doi.org/10.1002/pol.1969.160070810

    Article  CAS  Google Scholar 

  24. Koizumi N, Yano S, Tsunashima K (1969) Dielectric relaxation of poly(vinylidene fluoride). J Polym Sci C 7:59–64. https://doi.org/10.1002/pol.1969.110070113

    Article  CAS  Google Scholar 

  25. Nakagawa K, Ishida Y (1973) Dielectric relaxations and molecular motions in poly(vinylidene fluoride) with crystal form II. J Polym Sci Polym Phys Ed 11:1503–1533. https://doi.org/10.1002/pol.1973.180110804

    Article  CAS  Google Scholar 

  26. Yano S, Tadano K, Aoki K, Koizumi N (1974) Alternating-current ionic conduction and dielectric relaxation of poly(vinylidene fluoride) at high temperatures. J Polym Sci B Polym Phys 12:1875–1887. https://doi.org/10.1002/pol.1974.180120911

    Article  CAS  Google Scholar 

  27. Miyamoto Y, Miyaji H, Asai K (1980) Anisotropy of dielectric relaxation in crystal form II of poly(vinylidene fluoride). J Polym Sci Polym Phys Ed 18:597–606. https://doi.org/10.1002/pol.1980.180180318

    Article  CAS  Google Scholar 

  28. Kochervinskii VV, Malyshkina IA, Gradova MA, Kozlova NV, Shmakova NA, Buzin MI, Korlyukov AA, Bedin SA (2019) On the features of cooperative mobility in the amorphous phase of ferroelectric polymers, Colloid Polym. Sci 297:513–520. https://doi.org/10.1007/s00396-019-04478-6

    Article  CAS  Google Scholar 

  29. Maeda K, Tasaka S, Inagaki N (1991) Ferroelectric behavior of vinylidenefluoride-trifluoroethylene-hexafluropropylene terpolymers. Jap J Appl Phys 30:716–719. https://doi.org/10.1143/JJAP.30.716

    Article  CAS  Google Scholar 

  30. Latour M, Anis K (1993) Paraelectric to ferroelectric phase transitions in VDF/HFP copolymers under low electric stress. IEEE Trans Electr Insul 28:111–115. https://doi.org/10.1109/14.192246

    Article  CAS  Google Scholar 

  31. Kochervinskii VV, Malyshkina IA, Kiselev DA, Ilina TS, Kozlova NV, Shmakova NA, Korlyukov AA, Gradova MA, Bedin SA (2020) The effect of crystal polymorphism of ferroelectric copolymer vinylidene fluoride-hexafluoropropylene on its high-voltage polarization. J Appl Polym Sci 137, e49235. https://doi.org/10.1002/app.49235

  32. Welch GJ, Miller RL (1976) Crystallization of poly(vinylidenefluoride). Equilibrium melting point and heat of fusion of the α-polymorph. J Polym Sci 11:1683–1692. https://doi.org/10.1002/pol.1976.180140913

    Article  Google Scholar 

  33. Kochervinskii VV (1999) Ferroelectricity of polymers based on vinylidenefluoride. Russ Chem Rev 68:821–857. https://doi.org/10.1070/RC1999v068n10ABEH000446

    Article  CAS  Google Scholar 

  34. Kochervinskii VV, Kiselev DA, Malinkovich MD, Korlyukov AA, Lokshin BV, Volkov VV, Kirakosyan GA, Pavlov AS (2017) Surface topography and crystal and domain structures of films of ferroelectric copolymer of vinylidene difluoride and trifluoroethylene. Crystallogr Rep 62:324–335. https://doi.org/10.1134/S1063774517020146

    Article  CAS  Google Scholar 

  35. Kochervinskii VV (2008) Specifics of structural transformations in poly(vinylidene fluoride)-based ferroelectric polymers in high electric fields. Polym Sci Ser C 50:93–121. https://doi.org/10.1134/S1811238208010062

    Article  Google Scholar 

  36. Munoz RC, Vidal G, Mulsow M, Lisoni JG, Arenas C, Concha A (2000) Surface roughness and surface-induced resistivity of gold films on mica: application of quantitative scanning tunneling microscopy. Phys Rev B 62:4686–4697. https://doi.org/10.1103/PhysRevB.62.4686

    Article  CAS  Google Scholar 

  37. Kiselev DA, Bdikin IK, Selezneva EK, Bormanis K, Sternberg A, Kholkin AL (2007) Grain size effect and local disorder in polycrystalline relaxors via scanning probe microscopy. J Phys D: Appl Phys 40:7109–7112. https://doi.org/10.1088/0022-3727/40/22/037

    Article  CAS  Google Scholar 

  38. Kochervinskii VV, Kiselev DA, Malinkovich MD, Pavlov AS, Malyshkina IA (2015) Local piezoelectric response, structural and dynamic properties of ferroelectric copolymers of vinylidene fluoride–tetrafluoroethylene, Colloid Polym. Sci 293:533–543. https://doi.org/10.1007/s00396-014-3435-1

    Article  CAS  Google Scholar 

  39. Furukawa T, Seo N (1990) Electrostriction as the origin of piezoelectricity in ferroelectric polymers. Jpn J Appl Phys 29:675–680. https://doi.org/10.1143/JJAP.29.675

    Article  CAS  Google Scholar 

  40. Kochervinskii VV, Sul’yanov SN, (2006) Structure formation in crystallizing ferroelectric polymers. Phys Solid State 48:1079–1082. https://doi.org/10.1134/S1063783406060199

    Article  CAS  Google Scholar 

  41. Kochervinskii VV, Volkov VV, Dembo KA (2006) The role of intrachain dipole interactions in the formation of the supramolecular structure of crystallizing ferroelectric polymers. Phys Solid State 48:1083–1085. https://doi.org/10.1134/S1063783406060205

    Article  CAS  Google Scholar 

  42. Kochervinskii VV, Kozlova NV, Khnykov AY, Shcherbina MA, Sulyanov SN, Dembo KA (2010) Features of structure formation and electrophysical properties of poly(vinylidene fluoride) crystalline ferroelectric polymers. J Appl Polym Sci 116:695–707. https://doi.org/10.1002/app.31044

    Article  CAS  Google Scholar 

  43. Jungk T, Hoffmann Á, Soergel E (2007) Influence of the inhomogeneous field at the tip on quantitative piezoresponse force microscopy. Appl Phys A 86:353–355. https://doi.org/10.1007/s00339-006-3768-9

    Article  CAS  Google Scholar 

  44. Shashkov AS, Galil-Ogly FA, Novikov AS (1966) Nuclear magnetic resonance study of vinylidene fluoride and trifluorochloroethylene copolymers. Polym Sci USSR 8:288–294. https://doi.org/10.1016/0032-3950(66)90390-X

    Article  Google Scholar 

  45. Moggi G, Bonardelli P, Bart JCJ (1982) Synthesis and properties of some hexafluoropropene-1,1-difluoroethene copolymers. Polymer Bull 7:115–122. https://doi.org/10.1007/BF00265461

    Article  CAS  Google Scholar 

  46. Pianca M, Bonardelli P, Tato M, Cirillo G, Moggi G (1987) Composition and sequence distribution of vinylidene fluoride copolymer ant terpolymer fluoroelastomers. Determination by 19F nuclear magnetic resonance spectroscopy and correlation with some properties. Polymer 28:224–230. https://doi.org/10.1016/0032-3861(87)90408-3

    Article  CAS  Google Scholar 

  47. Moggi G, Harris RK (1998) Fluorine-19 MAS and 1H→19F/MAS NMR studies of Viton fluoroethylenes. Magn Reson Chem 36:892–900. https://doi.org/10.1002/(SICI)1097-458X(199812)36:12%3C892::AID-OMR384%3E3.0.CO;2-F

    Article  Google Scholar 

  48. Twum EB, McCord EF, Fox PA, Lyons DF, Rinaldi PL (2013) Characterization of backbone structures in poly(vinylidene fluorideco-hexafluoropropylene) copolymers by multidimensional 19F NMR spectroscopy macromolecules, 46:4892–4908. https://doi.org/10.1021/ma400683w

  49. Kochervinskii VV, Chubunova EV, Lebedinskii YY, Shmakova NA (2011) Effect of electrode material on contact high voltage polarization in a vinylidene fluoride–hexafluoropropylene copolymer. Polym Sci A 53:912–928. https://doi.org/10.1134/S0965545X11100051

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The NMR spectra were recorded on the spectrometers of the Shared Facility Centers at IGIC RAS and IPCE RAS. The authors are grateful to Dr. N.A. Shmakova (Karpov Institute of Physical Chemistry RAS) for the measurements of IR spectra.

Funding

DSC measurements were performed with the financial support from Ministry of Science and Higher Education of Russian Federation using the equipment from the Center for Molecular Composition Studies of INEOS RAS.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by VVK, MAG, OVG, AAM, IAM, GAK, DAK, RAC, MGT, AIZ, BVL, and MIB. The first draft of the manuscript was written by VVK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to V. V. Kochervinskii.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochervinskii, V.V., Gradova, M.A., Gradov, O.V. et al. Structure formation and electrophysical properties of poly(vinylidene fluoride-hexafluoropropylene) copolymer films at low-temperature solution crystallization. Colloid Polym Sci 300, 721–732 (2022). https://doi.org/10.1007/s00396-022-04983-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04983-1

Keywords

Navigation