Skip to main content
Log in

Spectroscopic analysis and nuclear magnetic resonance for silver nanoparticles synthesized with trans-resveratrol and cis-resveratrol

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The synthesis of silver nanoparticles with polyphenolic molecules (AgResvNPs) is important due to potential applications as nanocarriers of resveratrol. Silver nanoparticles were synthesized with trans-3,5,4′-trihydroxystilbene (resveratrol) and irradiated under UV light. Further AgResvNPs were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy with surface-enhanced Raman scattering (SERS), nuclear magnetic resonance (NMR), zeta potential, and dynamic light scattering (DLS) and study of aggregation kinetic and colloidal stability for this system in water and s-DMEM and evaluate the antioxidant capacity with total phenols count assay. Ultraviolet light irradiation promotes the synthesis of AgResvNPs and modifies the conformational structure of resveratrol. NMR confirmed these changes structurally in the molecule. Applications in SERS are an important application of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735. https://doi.org/10.1021/jp046032g

    Article  CAS  PubMed  Google Scholar 

  2. Vidhu VK, Philip D (2014) Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56:54–62. https://doi.org/10.1016/j.micron.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  3. Anker JN, Hall WP, Lyandres O et al (2009) Biosensing with plasmonic nanosensors. Nanoscience and Technology. Co-Published with Macmillan Publishers Ltd, UK, pp 308–319

    Chapter  Google Scholar 

  4. Desireddy A, Conn BE, Guo J et al (2013) Ultrastable silver nanoparticles. Nature 501:399–402. https://doi.org/10.1038/nature12523

    Article  CAS  PubMed  Google Scholar 

  5. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26:131–138. https://doi.org/10.1016/s0305-4179(99)00116-3

    Article  CAS  PubMed  Google Scholar 

  6. Patakfalvi R, Viranyi Z, Dekany I (2004) Kinetics of silver nanoparticle growth in aqueous polymer solutions. Colloid Polym Sci 283:299–305. https://doi.org/10.1007/s00396-004-1138-8

    Article  CAS  Google Scholar 

  7. Patakfalvi R, Oszkó A, Dékány I (2003) Synthesis and characterization of silver nanoparticle/kaolinite composites. Colloids Surf A Physicochem Eng Asp 220:45–54. https://doi.org/10.1016/s0927-7757(03)00056-6

    Article  CAS  Google Scholar 

  8. Németh J, Rodríguez-Gattorno G, Díaz D et al (2004) Synthesis of ZnO nanoparticles on a clay mineral surface in dimethyl sulfoxide medium. Langmuir 20:2855–2860. https://doi.org/10.1021/la035097s

    Article  CAS  PubMed  Google Scholar 

  9. Patakfalvi R, Dékány I (2004) Synthesis and intercalation of silver nanoparticles in kaolinite/DMSO complexes. Appl Clay Sci 25:149–159. https://doi.org/10.1016/j.clay.2003.08.007

    Article  CAS  Google Scholar 

  10. Ahmad S, Munir S, Zeb N et al (2019) Green nanotechnology: a review on green synthesis of silver nanoparticles - an ecofriendly approach. Int J Nanomedicine 14:5087–5107. https://doi.org/10.2147/IJN.S200254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saadh MJ, Aldalaen SM (2021) Inhibitory effects of epigallocatechin gallate (EGCG) combined with zinc sulfate and silver nanoparticles on avian influenza A virus subtype H5N1. Eur Rev Med Pharmacol Sci 25:2630–2636. https://doi.org/10.26355/eurrev_202103_25427

  12. Yuan Y-G, Peng Q-L, Gurunathan S (2017) Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine 12:6487–6502. https://doi.org/10.2147/ijn.s135482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohammed AE, Al-Qahtani A, Al-Mutairi A et al (2018) Antibacterial and cytotoxic potential of biosynthesized silver nanoparticles by some plant extracts. Nanomaterials (Basel). https://doi.org/10.3390/nano8060382

    Article  Google Scholar 

  14. Burdușel A-C, Gherasim O, Grumezescu AM et al (2018) Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel) 8:681. https://doi.org/10.3390/nano8090681

    Article  CAS  Google Scholar 

  15. Almatroodi SA, Almatroudi A, Khan AA et al (2020) Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules 25:3146. https://doi.org/10.3390/molecules25143146

    Article  CAS  PubMed Central  Google Scholar 

  16. Nguyen C, Savouret J-F, Widerak M et al (2017) Resveratrol, potential therapeutic interest in joint disorders: A critical narrative review. Nutrients 9:45. https://doi.org/10.3390/nu9010045

    Article  CAS  PubMed Central  Google Scholar 

  17. Patakfalvi R, Dékány I (2002) Preparation of silver nanoparticles in liquid crystalline systems. Colloid Polym Sci 280:461–470. https://doi.org/10.1007/s00396-001-0629-0

    Article  CAS  Google Scholar 

  18. Danaei M, Kalantari M, Raji M et al (2018) Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon 4:e01088. https://doi.org/10.1016/j.heliyon.2018.e01088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Babu PRS, Subrahmanyam CVS, Thimmasetty J et al (1970) Solubility enhancement of cox-II inhibitors by Cosolvency approach. Dhaka Univ J Pharm Sci 7:119–126. https://doi.org/10.3329/dujps.v7i2.2166

    Article  Google Scholar 

  20. Khattab IS, Bandarkar F, Fakhree MAA, Jouyban A (2012) Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K. Korean J Chem Eng 29:812–817. https://doi.org/10.1007/s11814-011-0239-6

    Article  CAS  Google Scholar 

  21. Välimaa A-L, Raitanen J-E, Tienaho J et al (2020) Enhancement of Norway spruce bark side-streams: Modification of bioactive and protective properties of stilbenoid-rich extracts by UVA-irradiation. Ind Crops Prod 145:112150. https://doi.org/10.1016/j.indcrop.2020.112150

    Article  CAS  Google Scholar 

  22. Vovk I, Glavnik V (2015) Analysis of dietary supplements. In: Instrumental thin-layer chromatography. Elsevier, pp 589–635

  23. López-Hernández J, Paseiro-Losada P, Sanches-Silva AT, Lage-Yusty MA (2007) Study of the changes of trans-resveratrol caused by ultraviolet light and determination of trans- and cis-resveratrol in Spanish white wines. Eur Food Res Technol 225:789–796. https://doi.org/10.1007/s00217-006-0483-x

    Article  CAS  Google Scholar 

  24. Rodríguez RÁ, Lahoz IR, Faza ON et al (2012) Theoretical and experimental exploration of the photochemistry of resveratrol: beyond the simple double bond isomerization. Org Biomol Chem 10:9175–9182. https://doi.org/10.1039/c2ob26241j

    Article  CAS  PubMed  Google Scholar 

  25. Mao Q (2015) The synthesis and antioxidant capacities of a range of resveratrol and related phenolic glucosides. https://digital.library.adelaide.edu.au

  26. Park S, Cha S-H, Cho I et al (2016) Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater Sci Eng C Mater Biol Appl 58:1160–1169. https://doi.org/10.1016/j.msec.2015.09.068

    Article  CAS  PubMed  Google Scholar 

  27. Vongsvivut J, Robertson EG, McNaughton D (2008) Surface-enhanced Raman scattering spectroscopy of resveratrol. Aust J Chem 61:921. https://doi.org/10.1071/ch08204

    Article  CAS  Google Scholar 

  28. Pompeu DR, Larondelle Y, Rogez H et al (2018) Characterization and discrimination of phenolic compounds using Fourier transform Raman spectroscopy and chemometric tools. Baseline

  29. Tiwari VS, Oleg T, Darbha GK et al (2007) Non-resonance SERS effects of silver colloids with different shapes. Chem Phys Lett 446:77–82. https://doi.org/10.1016/j.cplett.2007.07.106

    Article  CAS  Google Scholar 

  30. Michaels AM, Jiang BL (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J Phys Chem B 104:11965–11971. https://doi.org/10.1021/jp0025476

    Article  CAS  Google Scholar 

  31. Wang R, Yao Y, Shen M, Wang X (2016) Green synthesis of Au@Ag nanostructures through a seed-mediated method and their application in SERS. Colloids Surf A Physicochem Eng Asp 492:263–272. https://doi.org/10.1016/j.colsurfa.2015.11.076

    Article  CAS  Google Scholar 

  32. Xu D, Yang W, Zhang S, Chen J (2018) High surface roughness gold nanoparticle/centimeter level silver nanowire heterostructure detectors for SERS application. Sens Actuators A Phys 279:457–461. https://doi.org/10.1016/j.sna.2018.06.053

    Article  CAS  Google Scholar 

  33. Starowicz Z, Wojnarowska-Nowak R, Ozga P, Sheregii EM (2018) The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect. Colloid Polym Sci 296:1029–1037. https://doi.org/10.1007/s00396-018-4308-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Truong V-L, Jun M, Jeong W-S (2018) Role of resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors 44:36–49. https://doi.org/10.1002/biof.1399

    Article  CAS  PubMed  Google Scholar 

  35. Gambinossi F, Mylon SE, Ferri JK (2015) Aggregation kinetics and colloidal stability of functionalized nanoparticles. Adv Colloid Interf Sci 222:332–349. https://doi.org/10.1016/j.cis.2014.07.015

    Article  CAS  Google Scholar 

  36. Jarosova V, Vesely O, Doskocil I et al (2020) Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model. Nutrients 12:595. https://doi.org/10.3390/nu12030595

    Article  CAS  PubMed Central  Google Scholar 

  37. Chang Y-J, Chang Y-C, Liu RH et al (2018) Resveratrol can be stable in a medium containing fetal bovine serum with pyruvate but shortens the lifespan of human fibroblastic Hs68 cells. Oxid Med Cell Longev 2018:1–15. https://doi.org/10.1155/2018/2371734

    Article  CAS  Google Scholar 

  38. Dhand V, Soumya L, Bharadwaj S et al (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C Mater Biol Appl 58:36–43. https://doi.org/10.1016/j.msec.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  39. Singh P, Kim YJ, Yang DC (2016) A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif Cells Nanomed Biotechnol 44:1949–1957. https://doi.org/10.3109/21691401.2015.1115410

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

BERV would like to thank Conacyt for Doctoral Fellowship number 722868.

Funding

TEM analysis was supported by LUME, Laboratorio Universitario de Microscopía Electrónica del Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ericka Rodríguez-León or Rosa Elena Navarro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez, B.E.R., Rodríguez-Beas, C., Iñiguez-Palomares, R.A. et al. Spectroscopic analysis and nuclear magnetic resonance for silver nanoparticles synthesized with trans-resveratrol and cis-resveratrol. Colloid Polym Sci 300, 465–475 (2022). https://doi.org/10.1007/s00396-022-04957-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04957-3

Keywords

Navigation