Skip to main content
Log in

Controlling the shell structure of hard core/hydrogel shell microspheres

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Seeded precipitation polymerization is one of the most versatile techniques for the synthesis of solid core–hydrogel shell particles, and it is required to control the shell structure, which plays an important role in functionalization. In this study, the effect of the polymerization conditions, such as the monomer and cross-linker concentrations, on the structure of the shell layer was systematically investigated. A series of experiments revealed that the lack of cross-linking points at low monomer concentrations and the formation of secondary particles at high monomer concentrations hindered the introduction of shells onto the core particles. The dependence of the monomer concentration on the shell thickness was well described by a single-exponential equation, and thus, the required concentrations of monomer and cross-linker to prepare a target thickness/cross-linking density can be predicted. Moreover, the combination of seeded precipitation polymerization and the monomer feeding method allowed further control of the shell thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki D, Horigome K, Kureha T, Matsui S, Watanabe T (2017) Polymeric hydrogel microspheres: design, synthesis, characterization, assembly and applications. Polymer J 49:695–702

    Article  CAS  Google Scholar 

  3. Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W (2019) Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir 35:6231–6255

    Article  CAS  PubMed  Google Scholar 

  4. Nishizawa Y, Honda K, Suzuki D (2021) Recent development in the visualization of microgels. Chem Lett 50:1226–1235

    Article  CAS  Google Scholar 

  5. Urayama K, Saeki T, Cong S, Uratani S, Takigawa T, Murai M, Suzuki D (2014) A simple feature of yielding behavior of highly dense suspensions of soft micro-hydrogel particles. Soft Matter 10:9486–9495

    Article  CAS  PubMed  Google Scholar 

  6. Minami S, Watanabe T, Suzuki D, Urayama K (2016) Rheological properties of suspensions of thermo-responsive poly (N-isopropylacrylamide) microgels undergoing volume phase transition. Polym J 48:1079–1086

    Article  CAS  Google Scholar 

  7. Minato H, Murai M, Watanabe T, Matsui S, Takizawa M, Kureha T, Suzuki D (2018) The deformation of hydrogel microspheres at the air/water interface. Chem Commun 54:932–935

    Article  CAS  Google Scholar 

  8. Saxena S, Hansen CE, Lyon LA (2014) Microgel mechanics in biomaterial design. Acc Chem Res 47:2426–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kureha T, Nishizawa Y, Suzuki D (2017) Controlled separation and release of organoiodine compounds using poly(2-methoxyethyl acrylate)-analogue microspheres. ACS Omega 2:7686–7694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Honda R, Hamasaki A, Miura Y, Hoshino Y (2021) Thermoresponsive CO2 absorbent for various CO2 concentrations: tuning the pKa of ammonium ions for effective carbon capture. Polym J 53:157–167

    Article  Google Scholar 

  11. Nayak S, Lyon LA (2004) Ligand-Functionalized Core/Shell Microgels with Permselective Shells. Angew Chem Int Ed 43:6706–6709

    Article  CAS  Google Scholar 

  12. Ballauff M, Lu Y (2007) “Smart’’ nanoparticles: preparation, characterization and application. Polymers 48:1815–1823

    Article  CAS  Google Scholar 

  13. Matsui S, Hosho K, Minato H, Uchihashi T, Suzuki D (2019) Protein uptake into individual hydrogel microspheres visualized by high-speed atomic force microscopy. Chem Commun 55:10064–10067

    Article  CAS  Google Scholar 

  14. Inui K, Watanabe T, Minato H, Matsui S, Ishikawa K, Yoshida R, Suzuki D (2020) The Belousov-Zhabotinsky reaction in thermoresponsive core–shell hydrogel microspheres with a tris(2,2’-bipyridyl)ruthenium catalyst in the core. J Phys Chem B 124:3828–3835

    Article  CAS  PubMed  Google Scholar 

  15. Nayak S, Gan D, Serpe MJ, Lyon LA (2005) Hollow thermoresponsive microgels. Small 1:416–421

    Article  CAS  PubMed  Google Scholar 

  16. Schmid AJ, Dubbert J, Rudov AA, Pedersen JS, Linder P, Karg M, Potemkin II, Richtering W (2016) Multi-shell hollow nanogels with responsive shell permeability. Sci Rep 6:22736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Osorio-Blanco ER, Bergueiro J, Abali BE, Ehrmann S, Böttcher C, Müller AJ, Cuéllar-Camacho JL, Calderón M (2020) Effect of core nanostructure on the thermomechanical properties of soft nanoparticles. Chem Mater 32:518–528

    Article  CAS  Google Scholar 

  18. Suzuki D, Tujii S, Kawaguchi H (2007) Janus microgels prepared by surfactant-free pickering emulsion-based modification and their self-assembly. J Am Chem Soc 129:8088–8089

    Article  CAS  PubMed  Google Scholar 

  19. Umeda Y, Kobayashi T, Hirai T, Suzuki D (2011) Effects of pH and temperature on assembly of multiresponsive Janus microgels. Colloid Polym Sci 289:729–737

    Article  CAS  Google Scholar 

  20. Xu W, Rudov A, Oppermann A, Wypysek S, Kather M, Schroeder R, Richtering W, Potemkin II, Wöll D, Pich A (2020) Synthesis of polyampholyte Janus-like microgels by coacervation of reactive precursors in precipitation polymerization. Angew Chem Int Ed 59:1248–1255

    Article  CAS  Google Scholar 

  21. Kureha T, Nagase Y, Suzuki D (2018) High reusability of catalytically active gold nanoparticles immobilized in core–shell hydrogel microspheres. ACS Omega 3:6158–6165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kureha T, Suzuki D (2018) nanocomposite microgels for the selective separation of halogen compounds from aqueous solution. Langmuir 34:837–846

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe T, Nishizawa Y, Minato H, Song C, Murata K, Suzuki D (2020) Hydrophobic monomers recognize microenvironments in hydrogel microspheres during free-radical-seeded emulsion polymerization. Angew Chem Int Ed 59:8849–8853

    Article  CAS  Google Scholar 

  24. Vogel N, Fernández-López C, Pérez-Juste J, Liz-Marzán LM, Landfester K, Weiss CK (2012) Ordered arrays of gold nanostructures from interfacially assembled Au@PNIPAM hybrid nanoparticles. Langmuir 28:8985–8993

    Article  CAS  PubMed  Google Scholar 

  25. Rauh A, Rey M, Barbera L, Zanini M, Karg M, Lsa L (2017) Compression of hard core–soft shell nanoparticles at liquid–liquid interfaces: influence of the shell thickness. Soft Matter 13:158–169

    Article  CAS  Google Scholar 

  26. Fitzgerald JPS, Karg M (2017) Plasmon resonance coupling phenomena in self-assembled colloidal monolayers. Phys Status Solidi A 214:1600947

    Article  Google Scholar 

  27. Volk K, Deißenbeck F, Mandal S, Löwen H, Karg M (2019) Moiré and honeycomb lattices through self-assembly of hard-core/soft-shell microgels: experiment and simulation. Phys Chem Chem Phys 21:19153–19162

    Article  CAS  PubMed  Google Scholar 

  28. Goerlitzer ESA, Mohammadi R, Nechayev S, Volk K, Rey M, Banzer P, Karg M, Vogel N (2020) Chiral surface lattice resonances. Adv Mater 32:2001330

    Article  CAS  Google Scholar 

  29. Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo XH, Ballauff M, Lu Y (2012) Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew Chem Int Ed 51:2229–2233

    Article  CAS  Google Scholar 

  30. Lu Y, Drechsler M (2009) Charge-induced self-assembly of 2-dimensional thermosensitive microgel particle patterns. Langmuir 25:13100–13105

    Article  CAS  PubMed  Google Scholar 

  31. Perro A, Meng G, Fung J, Manoharan VN (2009) Design and synthesis of model transparent aqueous colloids with optimal scattering properties. Langmuir 25:11295–11298

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe T, Takizawa M, Jiang H, Ngai T, Suzuki D (2019) Hydrophobized nanocomposite hydrogel microspheres as particulate stabilizers for water-in-oil emulsions. Chem Commun 55:5990–5993

    Article  CAS  Google Scholar 

  33. Crassous JJ, Mihut AM, Mansson LK, Schurtenberger P (2015) Anisotropic responsive microgels with tunable shape and interactions. Nanoscale 7:15971–15982

    Article  CAS  PubMed  Google Scholar 

  34. Honda K, Sazuka Y, Iizuka K, Matsui S, Uchihashi T, Kureha T, Shibayama M, Watanabe T, Suzuki D (2019) Hydrogel Microellipsoids that form robust string-like assemblies at the air/water interface. Angew Chem Int Ed 58:7294–7298

    Article  CAS  Google Scholar 

  35. Tsuji S, Kawaguchi H (2004) Temperature-sensitive hairy particles prepared by living radical graft polymerization. Langmuir 20:2449–2455

    Article  CAS  PubMed  Google Scholar 

  36. Lu Y, Wittemann A, Ballauff M, Drechsler M (2006) Preparation of poly styrene-poly (N-isopropylacrylamide) (PS-PNIPA) core-shell particles by photoemulsion polymerization. Macromol Rapid Commun 27:1137–1141

    Article  CAS  Google Scholar 

  37. Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114

    Article  CAS  PubMed  Google Scholar 

  38. Ghiorghita CA, Mihai M (2021) Recent developments in layer-by-layer assembled systems application in water purification. Chemosphere 270. https://doi.org/10.1016/j.chemosphere.2020.129477

  39. Suzuki D, Yamagata T, Murai M (2013) Multilayered composite microgels synthesized by surfactant-free seeded polymerization. Langmuir 29:10579–10585

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe T, Kobayashi C, Song CH, Murata K, Kureha T, Suzuki D (2016) Impact of spatial distribution of charged groups in core poly(N-isopropylacrylamide)-based microgels on the resultant composite structures prepared by seeded emulsion polymerization of styrene. Langmuir 32:12760–12773

    Article  CAS  PubMed  Google Scholar 

  41. Rauh A, Honold T, Karg M (2016) Seeded precipitation polymerization for the synthesis of gold-hydrogel core-shell particles: the role of surface functionalization and seed concentration. Colloid Polym Sci 294:37–47

    Article  CAS  Google Scholar 

  42. Makino K, Yamamoto S, Fujimoto K, Kawaguchi H, Ohshima H (1994) Surface-structure of latex-particles covered with temperature-sensitive hydrogel layers. J Colloid Interface Sci 16:251–258

    Article  Google Scholar 

  43. Naseem K, Begum R, Wu WT, Irfan A, Farooqi ZH (2018) Advancement in multi-functional poly(styrene)-poly(N-isopropylacrylamide) based core-shell microgels and their applications. Polym Rev 58:288–325

    Article  CAS  Google Scholar 

  44. Suzuki D, Kawaguchi H (2006) Stimuli-sensitive core/shell template particles for immobilizing inorganic nanoparticles in the core. Colloid and Poly Sci 284:1443–1451

    Article  CAS  Google Scholar 

  45. Appel J, de Lange N, van der Kooij HM, van de Laar T, ten Hove JB, Kodger TE, Sprakel J (2015) Temperature controlled sequential gelation in composite microgel suspensions. Part Part Syst Charact 32:764–770

    Article  CAS  Google Scholar 

  46. Dulle M, Jaber S, Rosenfeldt S, Radulescu A, Forster S, Mulvaney P, Karg M (2015) Plasmonic gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: a small angle scattering study. Phys Chem Chem Phys 17:1354–1367

    Article  CAS  PubMed  Google Scholar 

  47. Virtanen OLJ, Kather M, Meyer-Kirschner J, Melle A, Radulescu A, Viell JD, Mitsos A, Pich A, Richtering W (2019) Direct monitoring of microgel formation during precipitation polymerization of N-isopropylacrylamide using in situ SANS. ACS Omega 4:3690–3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hertle Y, Zeiser M, Hasenohrl C, Busch P, Hellweg T (2010) Responsive p(NIPAM-co-NtBAM) microgels: Flory-Rehner description of the swelling behavior. Colloid and Poly Sci 288:1047–1059

    Article  CAS  Google Scholar 

  49. Wu X, Pelton RH, Hamielec AE, Woods DR, McPhee W (2119) The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid Polym Sci 272:467–477

  50. Nishizawa Y, Matsui S, Urayama K, Kureha T, Shibayama M, Uchihashi T, Suzuki D (2019) Non-thermoresponsive decanano-sized domains in thermoresponsive hydrogel microspheres revealed by temperature-controlled high-speed atomic force microscopy. Angew Chem Int Ed 58:8809–8813

    Article  CAS  Google Scholar 

  51. Nishizawa Y, Minato H, Inui T, Uchihashi T, Suzuki D (2021) Nanostructures, thermoresponsiveness, and assembly mechanism of hydrogel microspheres during aqueous free-radical precipitation polymerization. Langmuir 37:151–159

    Article  CAS  PubMed  Google Scholar 

  52. Acciaro R, Gilanyi T, Varga I (2011) Preparation of monodisperse poly(N-isopropylacrylamide) microgel particles with homogenous cross-link density distribution. Langmuir 27:7917–7925

    Article  CAS  PubMed  Google Scholar 

  53. Kwok M, Li Z, Ngai T (2013) Controlling the synthesis and characterization of micrometer-sized PNIPAM microgels with tailored morphologies. Langmuir 29:9581–9591

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

D.S. acknowledges the Grant-in-Aid for Young Scientists (A) (JSPS; 17H04892), the Grant-in-Aid for Challenging Exploratory Research (21K18999), and the Grant-in-Aid for Scientific Research on Innovative Areas (21H00392) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT). D.S. also acknowledges the CREST (JPMJCR21L2), Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Suzuki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 839 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishizawa, Y., Honda, K., Karg, M. et al. Controlling the shell structure of hard core/hydrogel shell microspheres. Colloid Polym Sci 300, 333–340 (2022). https://doi.org/10.1007/s00396-021-04934-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04934-2

Keywords

Navigation