Skip to main content
Log in

Electrical and optical properties of hydrogen titanate nanotube/PANI hybrid nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Hydrogen titanate nanotube (TNT)/polyaniline (PANI) hybrid nanocomposites were made up by hydrothermal method and subsequent in situ polymerization. Various characterization techniques were employed to explore the structure, thermal, electrical, and optical properties of the investigated hybrid nanocomposites. X-ray diffraction (XRD) revealed typical characteristic of two separate peaks for pure PANI and pristine TNT up to the composition of TNT less than 20 %. The transmission electron microscopy (TEM) image shows the tubular structure of the prepared TNT with an average diameter of 8–12 nm and length range from 80 to 150 nm. Electrical measurements of TNT/PANI nanocomposites indicated that the dc conductivity decreases upon introduction of TNT. Photoluminescence (PL) properties are found to be tunable with the weight fraction of the TNT mother phase. Moreover, increasing the TNT weight content enhanced the thermal stability of TNT/PANI nanocomposite. Finally, the tunability of the chemical and physical properties of these hybrid nanocomposites offers solutions to low-cost hybrid UV irradiation photodetector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khuspe GD, Chougule MA, Navale ST, Pawar SA, Patil VB (2014) Camphor sulfonic acid doped polyaniline-tin oxide hybrid nanocomposites: synthesis, structural, morphological, optical and electrical transport properties. Ceram Int 40:4267–4276

    Article  CAS  Google Scholar 

  2. Subramanian E, Subbulakshmi S, Murugan C (2014) Inter-relationship between nanostructures of conducting polyaniline and the photocatalytic methylene blue dye degradation efficiencies of its hybrid composites with anatase TiO2. Mater Res Bull 51:128–135

    Article  CAS  Google Scholar 

  3. Rao CNR, Muller A, Cheetham AK (2007) Nanomaterials chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  4. Wang F, Min S, Han Y, Feng L (2010) Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite photocatalysts. Superlattice Microstruct. 48:170–180

    Article  CAS  Google Scholar 

  5. Ahmed MA, Okasha N, Imam NG (2013) Advanced imaging techniques for characterization of 0.5BaTiO3/0.5Ni0.5Zn0.5Fe2O4 multiferroic nanocomposite. J. Alloys Compd 557:130–141

    Article  CAS  Google Scholar 

  6. Mohamed MB, Karimat ELS (2014) Structural, magnetic and dielectric properties of (PANI)–Ni0.5Zn0.5Fe1.5Cr0.5O4 nanocomposite. Compos Part B 56:270–278

    Article  CAS  Google Scholar 

  7. Kim CH, Kim B-H, Yang KS (2012) TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50:2472–2481

    Article  CAS  Google Scholar 

  8. Misoon O, Kim S (2012) Synthesis and electrochemical analysis of polyaniline/TiO2 composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid. Electrochim Acta 78:279–285

    Article  CAS  Google Scholar 

  9. Zhang L, Liu P, Su Z (2006) Preparation of PANI-TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polym Degrad Stab 91:2213–2219

    Article  CAS  Google Scholar 

  10. Radoicic M, Saponjic V, Nedeljkovic J, Marjanovic GC, Stejskal J (2010) Self-assembled polyaniline nanotubes and nanoribbons/titanium dioxide nanocomposites. Synth Met 160:1325–1334

    Article  CAS  Google Scholar 

  11. Li J, Zhu L, Wu Y, Harima Y, Zhang A, Tang H (2006) Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer 477:361–7367

    Google Scholar 

  12. Yavuz AG, Gök A (2007) Preparation of TiO2/PANI composites in the presence of surfactants and investigation of electrical properties. Synth Met 157:235–242

    Article  CAS  Google Scholar 

  13. Savitha KU, Prabu GH (2011) One-pot synthesis of PANI–TiO2 (anatase) hybrid of low electrical resistance using TiCl4 as precursor. Mater Chem Phys 130:275–279

    Article  CAS  Google Scholar 

  14. Ansari MO, Mohammad F (2011) Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (P TSA/PANI:TiO2) nanocomposites. Sens. Actuators B 157:122–129

    Article  CAS  Google Scholar 

  15. Yamin Y, Keller N, Keller V (2012) WO3-modified TiO2 nanotubes for photocatalytic elimination of methylethylketone under UVA and solar light irradiation. J. Photochem. Photobiol. A: Chem. 245:43–57

    Article  CAS  Google Scholar 

  16. Xia H, Wang Q (2002) Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem Mater 5(14):2158–2165

    Article  CAS  Google Scholar 

  17. Schnitzler DC, Meruvia MS, Hummelgen IA, Zarbin AJZG (2004) Organic/inorganic hybrid materials formed from TiO2 nanoparticles and polyaniline. J. Brazil. Chem. Soc. 3(15):378–384

    Article  Google Scholar 

  18. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  19. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Nihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Article  CAS  Google Scholar 

  20. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Nihara K (1999) Titanate nanotubes prepared by chemical processing. Adv Mater 11:1307

    Article  CAS  Google Scholar 

  21. Xiang LLC, Liang X, Hao B (2010) Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole: preparation and electromagnetic properties. Synth Met 160:28–34

    Article  CAS  Google Scholar 

  22. Lee CK, Liu SS, Chen HC (2009) Application of hydrothermal method derived titanate nanotubes as adsorbents. Recent Pat Nanotechnol 3:203–212

    Article  CAS  Google Scholar 

  23. Yu JG, Wang GH, Cheng B, Zhou MH (2007) Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl Catal B 69:171–180

    Article  CAS  Google Scholar 

  24. Chen Q, Peng LM (2007) Structure and applications of titanate and related nanostructures. Int J Nanotechnol 4:44–65

    Article  Google Scholar 

  25. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824

    Article  CAS  Google Scholar 

  26. Hopkins A, Lipeles R, Hwang S (2008) Morphology characterization of polyaniline nano- and microstructures. Synth Met 158:594–601

    Article  CAS  Google Scholar 

  27. Min S, Wang F, Han Y (2007) An investigation on synthesis and photocatalytic activity of polyaniline sensitized nanocrystalline TiO2 composites. J Mater Sci 24:9966–9972

    Article  CAS  Google Scholar 

  28. Horowitz HH, Metzger GGE (1963) A new analysis of thermogravimetric traces. Anal Chem 35:1464–1468

    Article  CAS  Google Scholar 

  29. Ahmed MA, Okasha N, Imam NG (2015) Crossover between PEG and BT/NZF magnetoelectric nanocomposites for tailoring applicable multiferroic materials. J Supercond Nov Magn 28:2783

    Article  CAS  Google Scholar 

  30. MacDiarmid AG, Epstein AJ (1995) Secondary doping in polyaniline. Synth Met 69:85–92

    Article  CAS  Google Scholar 

  31. Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Solitons in conducting polymers. Rev Mod Phys 60:781–850

    Article  CAS  Google Scholar 

  32. Grant PM, Batra IP (1979) Band structure of polyacetylene, (CH)x. Solid State Communications. 29:225–229

    Article  CAS  Google Scholar 

  33. Fink J, Leising G (1986) Momentum-dependent dielectric functions of oriented trans-polyacetylene. Phys Rev B 34:5320

    Article  CAS  Google Scholar 

  34. Dutta P, Biswas S, Ghosh M, De SK, Chatterjee S (2001) The dc and ac conductivity of polyaniline–polyvinyl alcohol blends. Synth Met 122:455–461

    Article  CAS  Google Scholar 

  35. De S, Dey A, Dea SK (2005) Dielectric spectroscopy of PANI-CaTiO3 composites. The Eur Phys J 46:355

    Article  CAS  Google Scholar 

  36. Parveen A, Anil Kumar K, Revanasidappa M, Ekhilikar S, Ambika Prasad MVN (2008) Ferroelectrics 377:63–74

    Article  CAS  Google Scholar 

  37. Khani ZH, Malik MM, Zulfequar M, Husain M (1995) Electrical conduction mechanism in a-Se80-xTexGa20 films (0 < or = x < or = 20). J Phys Condens Matter 7:8979

    Article  Google Scholar 

  38. Heiba ZK, Mohamed MB, Imam NG (2015) Biphasic quantum dots of cubic and hexagonal Mn doped CdS; necessity of Rietveld analysis. J Alloys Compd 618:280–286

    Article  CAS  Google Scholar 

  39. Heiba ZK, Mohamed BM, Imam NG (2015) Structural tuning of CdS nanoparticles with nucleation temperature and its reflection on the optical properties. J Mol Struct 1094:91–97

    Article  CAS  Google Scholar 

  40. Heiba ZK, Imam NG, Mohamed BM (2015) Coexistence of cubic and hexagonal phases of Cd doped ZnS at different annealing temperatures. Mater Sci Semicond Process 34:39–44

    Article  CAS  Google Scholar 

  41. Sarma BK, Pal AR, Bailung H, Chutia J (2012) A hybrid heterojunction with reverse rectifying characteristics fabricated by magnetron sputtered TiOx and plasma polymerized aniline structure. J Phys D Appl Phys 45:275401

    Article  CAS  Google Scholar 

  42. Pan D, Zhao N, Wang Q, Jiang S, Ji X (2005) Facile synthesis and characterization of luminescent TiO2 nanocrystals. An Adv Mater 17:1991–1995

    Article  CAS  Google Scholar 

  43. Shimano JY, MacDiarmid AG (2001) Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity. Synth Met 123:251–262

    Article  CAS  Google Scholar 

  44. Deivanayaki S, Ponnuswamy V, Ashokan S, Jayamurugan P, Mariappan R (2013) Synthesis and characterization of TiO2-doped polyaniline nanocomposites by chemical oxidation method. Mat Sci Semicon Proc 16:554–560

    Article  CAS  Google Scholar 

  45. Hussain AA, Pal AR, Patil DS (2014) High photosensitivity with enhanced photoelectrical contribution in hybrid nanocomposite flexible UV photodetector. Org Electron 15:2107–2115

    Article  CAS  Google Scholar 

  46. Oueiny C. Berlioz S, Perrin F X (2014) Carbon nanotube–polyaniline composites. Prog Polym Sci 39:707–748.

    Article  CAS  Google Scholar 

  47. Singh SK, Verma AK, Shuk RK (2014) Synthesis and optical studies of pure polyaniline film. Int J Curr Microbiol App Sci 3:512–517

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Bakr Mohamed or N. G. Imam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, N.Y., Mohamed, M.B., Imam, N.G. et al. Electrical and optical properties of hydrogen titanate nanotube/PANI hybrid nanocomposites. Colloid Polym Sci 294, 215–224 (2016). https://doi.org/10.1007/s00396-015-3769-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3769-3

Keywords

Navigation