Skip to main content

Advertisement

Log in

Smart use of tertiary amine to design CO2-triggered viscoelastic fluids

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The construction of CO2-responsive surfactant-based viscoelastic fluids is an area of great endeavor, hitherto achieved mainly through the aid of synthetic surfactant with CO2-sensitive group. Here, classic cetyltrimethylammonium bromide (CTAB)-sodium salicylate (NaSal) wormlike micellar system is endowed with CO2 response by simply introducing CO2-responsive triethylamine (TEA) without needing specialized organic synthesis. Such a system can be reversibly switched between water-like solution (∼3 mPa s) and viscoelastic fluid (∼40,000 mPa⋅s) with alternately bubbling CO2 or N2, reflecting microstructures evolution from spheres to worms, and this cycle can be repeated more than 15 times without any deterioration. Whereas HCl-induced viscoelastic fluid exhibits obvious weaken after 15 cycles. Combined with pH, conductivity, rheology, UV–Vis, cryo-TEM, and surface activity parameters, it was demonstrated that the CO2 response of CTAB-NaSal-TEA system originated from the effect of TEA on the binding ability of NaSal to CTAB as species vary, which generally results in a viscosity gap. This simple route to design CO2-triggered viscoelastic fluids can be extended to other tertiary amines, even other types of surfactants, and these CO2-switchable worms are of great interests for scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chu Z, Dreiss CA, Feng Y (2013) Smart wormlike micelles. Chem Soc Rev 42:7174–7203

    Article  CAS  Google Scholar 

  2. Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970

    Article  CAS  Google Scholar 

  3. Zhang Y, Guo Z, Zhang J, Feng Y, Wang B, Wang J (2011) Smart wormlike micellar systems. Prog Chem 23:2012–2020

    CAS  Google Scholar 

  4. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  Google Scholar 

  5. Shi HF, Wang Y, Fang B, Talmon Y, Ge W, Raghavan SR, Zakin JL (2011) Light-responsive threadlike micelles as drag reducing fluids with enhanced heat-transfer capabilities. Langmuir 27:5806–5813

    Article  CAS  Google Scholar 

  6. Müller N, Wolff T, Von Bünau G (1984) Light-induced viscosity changes of aqueous solutions containing 9-substituted anthracenes solubilized in cetyltrimethylammonium micelles. J Photochem 24:37–43

    Article  Google Scholar 

  7. Wolff T, Kerperin KJ (1993) Influence of solubilized 2,2,2-trifluoro-1-(9-anthryl) -ethanol and its photodimerization on viscoelasticity in dilute aqueous cetyltrimethylammonium bromide solutions. J Colloid Interface Sci 157:185–195

    Article  CAS  Google Scholar 

  8. Sakai H, Orihara Y, Kodashima H, Matsumura A, Ohkubo T, Tsuchiya K, Abe M (2005) Photoinduced reversible change of fluid viscosity. J Am Chem Soc 127:13454–13455

    Article  CAS  Google Scholar 

  9. Matsumura A, Sakai K, Sakai H, Abe M (2011) Photoinduced increase in surfactant solution viscosity using azobenzene dicarboxylate for molecular switching. J Oleo Sci 60:203–207

    Article  CAS  Google Scholar 

  10. Sakai H, Taki S, Tsuchiya K, Matsumura A, Sakai K, Abe M (2012) Photochemical control of viscosity using sodium cinnamate as a photoswitchable molecule. Chem Lett 41:247–248

    Article  CAS  Google Scholar 

  11. Li J, Zhao M, Zhou H, Gao H, Zheng L (2012) Photo-induced transformation of wormlike micelles to spherical micelles in aqueous solution. Soft Matter 8:7858–7864

    Article  CAS  Google Scholar 

  12. Lin Y, Han X, Huang J, Fu H, Yu C (2009) A facile route to design pH-responsive viscoelastic wormlike micelles: smart use of hydrotropes. J Colloid Interface Sci 330:449–455

    Article  CAS  Google Scholar 

  13. Lin Y, Han X, Cheng X, Huang J, Liang D, Yu C (2008) pH-regulated molecular self-assemblies in a cationic-anionic surfactant system: from a “1-2” surfactant pair to a “1-1” surfactant pair. Langmuir 24:13918–13924

    Article  CAS  Google Scholar 

  14. Verma G, Aswal VK, Hassan P (2009) pH-responsive self-assembly in an aqueous mixture of surfactant and hydrophobic amino acid mimic. Soft Matter 5:2919–2927

    Article  CAS  Google Scholar 

  15. Chu Z, Feng Y (2010) pH-switchable wormlike micelles. Chem Commun 46:9028–9030

    Article  CAS  Google Scholar 

  16. Zhang Y, Han Y, Chu Z, He S, Zhang J, Feng Y (2013) Thermally induced structural transitions from fluids to hydrogels with pH-switchable anionic wormlike micelles. J Colloid Interface Sci 394:319–328

    Article  CAS  Google Scholar 

  17. Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M (2004) Control of viscoelasticity using redox reaction. J Am Chem Soc 126:12282–12283

    Article  CAS  Google Scholar 

  18. Chu Z, Feng Y (2011) Thermo-switchable surfactant gel. Chem Commun 47:7191–7193

    Article  CAS  Google Scholar 

  19. Davies TS, Ketner AM, Raghavan SR (2006) Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J Am Chem Soc 18:6669–6675

    Article  Google Scholar 

  20. Liu YX, Jessop PG, Cunningham M, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960

    Article  CAS  Google Scholar 

  21. Guo Z, Feng Y, Wang Y, Wang J, Wu Y, Zhang Y (2011) A novel smart polymer responsive to CO2. Chem Commun 47:9348–9350

    Article  CAS  Google Scholar 

  22. Guo Z, Feng Y, He S, Qu M, Chen H, Liu H, Wu Y, Wang Y (2013) CO2-responsive “smart” single-walled carbon nanotubes. Adv Mater 25:584–590

    Article  CAS  Google Scholar 

  23. Jessop PG, Mercer SM, Heldebrant DJ (2012) CO2-switchable solvents, surfactants and other materials. Energy Environ Sci 5:7240–7253

    Article  CAS  Google Scholar 

  24. Cunningham M, Jessop PG (2014) CO2-switchable materials. Green Mater 2:53–53

    Article  Google Scholar 

  25. Zhang Y, Feng Y, Wang J, He S, Guo Z, Chu Z, Dreiss CA (2013) CO2-switchable wormlike micelles. Chem Commun 49:4902–4904

    Article  CAS  Google Scholar 

  26. Zhang Y, Chu Z, Dreiss CA, Wang Y, Fei C, Feng Y (2013) Smart wormlike micelles switched by CO2 and air. Soft Matter 9:6217–6221

    Article  CAS  Google Scholar 

  27. Zhang Y, Yin H, Feng Y (2014) CO2-responsive anionic wormlike micelles based on natural erucic acid. Green Mater 2:95–103

    Article  Google Scholar 

  28. Zhang Y, Feng Y, Wang Y, Li X (2013) CO2-switchable viscoelastic fluids based on a “pseudo” gemini surfactant. Langmuir 29:4187–4192

    Article  CAS  Google Scholar 

  29. Su X, Cunningham MF, Jessop PG (2013) Switchable viscosity triggered by CO2 using smart worm-like micelles in water. Chem Commun 49:2655–2657

    Article  CAS  Google Scholar 

  30. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  31. Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions: model systems for rheological research. Mol Phys 74:933–973

    Article  CAS  Google Scholar 

  32. Anet F (1986) Novel spin-spin splitting and relaxation effects in the proton NMR spectra of sodium salicylate in viscoelastic micelles. J Am Chem Soc 108:7102–7103

    Article  CAS  Google Scholar 

  33. Shikata T, Hirata H, Kotaka T (1988) Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4:354–359

    Article  CAS  Google Scholar 

  34. Zhang Y, Luo Y, Wang Y, Zhang J, Feng Y (2013) Single-component wormlike micellar system formed by a carboxylbetaine surfactant with C22 saturated tail. Colloid Surf A-Physicochem Eng Asp 436:71–79

    Article  CAS  Google Scholar 

  35. Chu Z, Feng Y, Su X, Han Y (2010) Wormlike micelles and solution properties of a C22-tailed amidosulfobetaine surfactant. Langmuir 26:7783–7791

    Article  CAS  Google Scholar 

  36. Han Y, Feng Y, Sun H, Li Z, Han Y, Wang H (2011) Wormlike micelles formed by sodium erucate in the presence of a tetraalkylammonium hydrotrope. J Phys Chem B 115:6893–6902

    Article  CAS  Google Scholar 

  37. Hoffmann H (1994) Viscoelastic surfactant solution. In Structure and flow in surfactant solutions. Herb CA, Prudhomme RK, Eds. American Chemical Society, Washingdon, DC

  38. Candau SJ, Oda R (2001) Linear viscoelasticity of salt-free wormlike micellar solutions. Colloid Surf A-Physicochem Eng Asp 183:5–14

    Article  Google Scholar 

  39. Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys-Condes Matter 2:6869–6892

    Article  CAS  Google Scholar 

  40. Wang D, Dong R, Long P, Hao J (2011) Photo-induced phase transition from multilamellar vesicles to wormlike micelles. Soft Matter 7:10713–10719

    Article  CAS  Google Scholar 

  41. Kern F, Zana R, Candau SJ (1991) Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate and sodium chloride. Langmuir 7:1344–1351

    Article  CAS  Google Scholar 

  42. Granek R, Cates ME (1992) Stress relaxation in living polymers: results from a Poisson renewal model. J Chem Phys 96:4758–4767

    Article  CAS  Google Scholar 

  43. Jin R, Aoki S, Shima K (1997) Phosphoniumyl cationic porphyrins self-aggregation origin from [pi ][ndash ][pi ] and cation[ndash ][pi ] interactions. J Chem Soc Faraday Trans 93:3945–3953

    Article  Google Scholar 

  44. Zhang W, Li G, Shen Q, Mu J (2000) Effect of benzyl alcohol on the rheological properties of CTAB:KBr micellar systems. Colloid Surf A-Physicochem Eng Asp 170:59–64

    Article  CAS  Google Scholar 

  45. Pokhriyal NK, Joshi JV, Goyal PS (2003) Viscoelastic behaviour of cetyl trimethyl ammonium bromide/sodium salicylate/water system: Effect of solubilisation of different polarity oils. Colloid Surf A-Physicochem Eng Asp 218:201–212

    Article  CAS  Google Scholar 

  46. Ruiz C (1995) A photophysical study of micellization of cetyltrimethylammonium bromide in urea-water binary mixtures. Mol Phys 86:535–546

    Article  Google Scholar 

  47. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans II 72:1525–1568

    Article  Google Scholar 

  48. Nagarajan R, Ruckenstein E (1991) Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir 7:2934–2969

    Article  CAS  Google Scholar 

  49. Cummings S, Xing D, Enick R, Rogers S, Heenan R, Grillo I, Eastoe J (2012) Design principles for supercritical CO2 viscosifiers. Soft Matter 8:3044–3055

    Article  Google Scholar 

  50. Gozalpour F, Ren SR, Tohidi B (2005) CO2 Eor and storage in oil reservoir. Oil Gas Sci Technol 60:537–546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (JUSRP11421), the open research fund of Key Laboratory of Food Colloids and Biotechnology Ministry of Education, Jiangnan University (JDSJ2013-08), the Natural Science Foundation of China (21173207), Qinlan Project of Jiangsu Province, and Zhejiang Zanyu Technology Co. Ltd. of Zhejiang Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., An, P., Liu, X. et al. Smart use of tertiary amine to design CO2-triggered viscoelastic fluids. Colloid Polym Sci 293, 357–367 (2015). https://doi.org/10.1007/s00396-014-3421-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3421-7

Keywords

Navigation