Skip to main content
Log in

Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The mechanical environment of the myocardium has a potent effect on cardiomyocyte form and function, yet an understanding of the cardiomyocyte responses to extracellular stiffening remains incomplete. We therefore employed a cell culture substrate with tunable stiffness to define the cardiomyocyte responses to clinically relevant stiffness increments in the absence of cell–cell interactions. When cultured on substrates magnetically actuated to mimic the stiffness of diseased myocardium, isolated rat adult cardiomyocytes exhibited a time-dependent reduction of sarcomere shortening, characterized by slowed contraction and relaxation velocity, and alterations of the calcium transient. Cardiomyocytes cultured on stiff substrates developed increases in viscoelasticity and microtubule detyrosination in association with early increases in the α-tubulin detyrosinating enzyme vasohibin-2 (Vash2). We found that knockdown of Vash2 was sufficient to preserve contractile performance as well as calcium transient properties in the presence of extracellular substrate stiffening. Orthogonal prevention of detyrosination by overexpression of tubulin tyrosine ligase (TTL) was also able to preserve contractility and calcium homeostasis. These data demonstrate that a pathologic increment of extracellular stiffness induces early, cell-autonomous remodeling of adult cardiomyocytes that is dependent on detyrosination of α-tubulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agnetti G, Halperin VL, Kirk JA, Chakir K, Guo Y, Lund L, Nicolini F, Gherli T, Guarnieri C, Caldarera CM, Tomaselli GF, Kass DA, Van Eyk JE (2014) Desmin modifications associate with amyloid-like oligomers deposition in heart failure. Cardiovasc Res 102:24–34

    Article  CAS  Google Scholar 

  2. Bayomy AF, Bauer M, Qiu Y, Liao R (2012) Regeneration in heart disease-Is ECM the key? Life Sci 91:823–827

    Article  CAS  Google Scholar 

  3. Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, Morine KJ, Gardner TJ, Discher DE, Sweeney HL (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290:2196

    Article  Google Scholar 

  4. Boothe SD, Myers JD, Pok S, Sun J, Xi Y, Nieto RM, Cheng J, Jacot JG (2016) The effect of substrate stiffness on cardiomyocyte action potentials. Cell Biochem Biophys 74:527–535

    Article  CAS  Google Scholar 

  5. Caporizzo MA, Chen CY, Prosser BL (2019) Cardiac microtubules in health and heart disease. Exp Biol Med (Maywood) 244:1255–1272

    Article  CAS  Google Scholar 

  6. Caporizzo MA, Chen CY, Bedi K, Margulies KB, Prosser BL (2020) Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation 141:902–915

    Article  CAS  Google Scholar 

  7. Chen CY, Caporizzo MA, Bedi K, Vite A, Bogush AI, Robison P, Heffler JG, Salomon AK, Kelly NA, Babu A, Morley MP, Margulies KB, Prosser BL (2018) Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat Med 24:1225–1233

    Article  CAS  Google Scholar 

  8. Chen CY, Salomon AK, Caporizzo MA, Curry S, Kelly NA, Bedi K, Bogush AI, Kramer E, Schlossarek S, Janiak P, Moutin MJ, Carrier L, Margulies KB, Prosser BL (2020) Depletion of vasohibin 1 speeds contraction and relaxation in failing human cardiomyocytes. Circ Res 127:e14–e27

    Article  CAS  Google Scholar 

  9. Cheng G, Zile MR, Takahashi M, Baicu CF, Bonnema DD, Cabral F, Menick DR, Cooper G (2008) A direct test of the hypothesis that increased microtubule network density contributes to contractile dysfunction of the hypertrophied heart. Am J Physiol Heart Circ Physiol 294:2231

    Article  Google Scholar 

  10. Chinnakkannu P, Samanna V, Cheng G, Ablonczy Z, Baicu CF, Bethard JR, Menick DR, Kuppuswamy D, Cooper G (2010) Site-specific microtubule-associated protein 4 dephosphorylation causes microtubule network densification in pressure overload cardiac hypertrophy. J Biol Chem 285:21837–21848

    Article  CAS  Google Scholar 

  11. Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OH (1995) Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 91:161–170

    Article  CAS  Google Scholar 

  12. Corbin EA, Vite A, Peyster EG, Bhoopalam M, Brandimarto J, Wang X, Bennett AI, Clark AT, Cheng X, Turner KT, Musunuru K, Margulies KB (2019) Tunable and reversible substrate stiffness reveals a dynamic mechanosensitivity of cardiomyocytes. ACS Appl Mater Interfaces 11:20603–20614

    Article  CAS  Google Scholar 

  13. Crocini C, Walker CJ, Anseth KS, Leinwand LA (2020) Three-dimensional encapsulation of adult mouse cardiomyocytes in hydrogels with tunable stiffness. Prog Biophys Mol Biol 154:71–79

    Article  CAS  Google Scholar 

  14. Galie PA, Khalid N, Carnahan KE, Westfall MV, Stegemann JP (2013) Substrate stiffness affects sarcomere and costamere structure and electrophysiological function of isolated adult cardiomyocytes. Cardiovasc Pathol 22:219–227

    Article  CAS  Google Scholar 

  15. Gutierrez C, Blanchard DG (2004) Diastolic heart failure: challenges of diagnosis and treatment. Am Fam Physician 69:2609–2616

    Google Scholar 

  16. Ishibashi Y, Tsutsui H, Yamamoto S, Takahashi M, Imanaka-Yoshida K, Yoshida T, Urabe Y, Sugimachi M, Takeshita A (1996) Role of microtubules in myocyte contractile dysfunction during cardiac hypertrophy in the rat. Am J Physiol 271:1978

    Google Scholar 

  17. Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95:3479–3487

    Article  CAS  Google Scholar 

  18. Janmey PA, Miller RT (2011) Mechanisms of mechanical signaling in development and disease. J Cell Sci 124:9–18

    Article  CAS  Google Scholar 

  19. Janmey PA, Fletcher DA, Reinhart-King CA (2020) Stiffness sensing by cells. Physiol Rev 100:695–724

    Article  CAS  Google Scholar 

  20. Jian Z, Han H, Zhang T, Puglisi J, Izu LT, Shaw JA, Onofiok E, Erickson JR, Chen Y, Horvath B, Shimkunas R, Xiao W, Li Y, Pan T, Chan J, Banyasz T, Tardiff JC, Chiamvimonvat N, Bers DM, Lam KS, Chen-Izu Y (2014) Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. Sci Signal 7:ra27. https://doi.org/10.1126/scisignal.2005046

    Article  CAS  Google Scholar 

  21. Kerr JP, Robison P, Shi G, Bogush AI, Kempema AM, Hexum JK, Becerra N, Harki DA, Martin SS, Raiteri R, Prosser BL, Ward CW (2015) Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun 6:8526

    Article  CAS  Google Scholar 

  22. Koshy SK, Reddy HK, Shukla HH (2003) Collagen cross-linking: new dimension to cardiac remodeling. Cardiovasc Res 57:594–598

    Article  CAS  Google Scholar 

  23. Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225:631–637

    Article  CAS  Google Scholar 

  24. Kronenbitter A, Funk F, Hackert K, Gorreßen S, Glaser D, Boknik P, Poschmann G, Stühler K, Isić M, Krüger M, Schmitt JP (2018) Impaired Ca2+ cycling of nonischemic myocytes contributes to sarcomere dysfunction early after myocardial infarction. J Mol Cell Cardiol 119:28–39. https://doi.org/10.1016/j.yjmcc.2018.04.004

    Article  CAS  Google Scholar 

  25. Loescher CM, Hobbach AJ, Linke WA. (2021) Titin (TTN): from molecule to modifications, mechanics and medical significance. Cardiovasc Res. cvab328 [pii]

  26. McCain ML, Parker KK (2011) Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 462:89–104

    Article  CAS  Google Scholar 

  27. Pessot G, Schumann M, Gundermann T, Odenbach S, Lowen H, Menzel AM (2018) Tunable dynamic moduli of magnetic elastomers: from characterization by x-ray micro-computed tomography to mesoscopic modeling. J Phys Condens Matter. https://doi.org/10.1088/1361-648X/aaaeaa

    Article  Google Scholar 

  28. Phyo SA, Uchida K, Chen CY, Caporizzo MA, Bedi K, Griffin J, Margulies K, Prosser BL (2022) Transcriptional, post-transcriptional, and post-translational mechanisms rewrite the tubulin code during cardiac hypertrophy and failure. Front Cell Dev Biol. https://doi.org/10.1101/2022.01.24.477567

    Article  Google Scholar 

  29. Poh Y, Chowdhury F, Tanaka TS, Wang N (2010) Embryonic stem cells do not stiffen on rigid substrates. Biophys J 99:19. https://doi.org/10.1016/j.bpj.2010.04.057

    Article  CAS  Google Scholar 

  30. Robison P, Prosser BL (2017) Microtubule mechanics in the working myocyte. J Physiol 595:3931–3937

    Article  CAS  Google Scholar 

  31. Robison P, Caporizzo MA, Ahmadzadeh H, Bogush AI, Chen CY, Margulies KB, Shenoy VB, Prosser BL (2016) Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science. https://doi.org/10.1126/science.aaf0659

    Article  Google Scholar 

  32. Savarese G, Lund LH (2017) Global public health burden of heart failure. Card Fail Rev 3:7–11

    Article  Google Scholar 

  33. Setterberg IE, Le C, Frisk M, Perdreau-Dahl H, Li J, Louch WE (2021) The physiology and pathophysiology of T-tubules in the heart. Front Physiol 12:718404. https://doi.org/10.3389/fphys.2021.718404

    Article  Google Scholar 

  34. Sumita Yoshikawa W, Nakamura K, Miura D, Shimizu J, Hashimoto K, Kataoka N, Toyota H, Okuyama H, Miyoshi T, Morita H, Fukushima Kusano K, Matsuo T, Takaki M, Kajiya F, Yagi N, Ohe T, Ito H (2013) Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic beta-adrenergic stimulation. Circ J 77:741–748

    Article  Google Scholar 

  35. Tagawa H (1996) Cytoskeletal role in the contractile dysfunction of cardiocytes from hypertrophied and failing right ventricular myocardium. Proc Assoc Am Physicians 108:218–229

    CAS  Google Scholar 

  36. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118:1021–1040

    Article  CAS  Google Scholar 

  37. Tsutsui H, Ishihara K, Cooper G (1993) Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 260:682–687

    Article  CAS  Google Scholar 

  38. van Deel ED, Najafi A, Fontoura D, Valent E, Goebel M, Kardux K, Falcao-Pires I, van der Velden J (2017) In vitro model to study the effects of matrix stiffening on Ca(2+) handling and myofilament function in isolated adult rat cardiomyocytes. J Physiol 595:4597–4610

    Article  Google Scholar 

  39. van Heerebeek L, Franssen CP, Hamdani N, Verheugt FW, Somsen GA, Paulus WJ (2012) Molecular and cellular basis for diastolic dysfunction. Curr Heart Fail Rep 9:293–302

    Article  CAS  Google Scholar 

  40. Wheelwright M, Win Z, Mikkila JL, Amen KY, Alford PW, Metzger JM (2018) Investigation of human iPSC-derived cardiac myocyte functional maturation by single cell traction force microscopy. PLoS One 13:e0194909

    Article  Google Scholar 

  41. Yamamoto K, Masuyama T, Sakata Y, Nishikawa N, Mano T, Yoshida J, Miwa T, Sugawara M, Yamaguchi Y, Ookawara T, Suzuki K, Hori M (2002) Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart. Cardiovasc Res 55:76–82

    Article  CAS  Google Scholar 

  42. Yao J, Sun Y, Wang Y, Fu Q, Xiong Z, Liu Y (2018) Magnet-induced aligning magnetorheological elastomer based on ultra-soft matrix. Composites Sci Technol 162:170–179. https://doi.org/10.1016/j.compscitech.2018.04.036

    Article  CAS  Google Scholar 

  43. Young JL, Kretchmer K, Ondeck MG, Zambon AC, Engler AJ (2014) Mechanosensitive kinases regulate stiffness-induced cardiomyocyte maturation. Sci Rep 4:6425

    Article  CAS  Google Scholar 

  44. Yu X, Chen X, Amrute-Nayak M, Allgeyer E, Zhao A, Chenoweth H, Clement M, Harrison J, Doreth C, Sirinakis G, Krieg T, Zhou H, Huang H, Tokuraku K, Johnston DS, Mallat Z, Li X (2021) MARK4 controls ischaemic heart failure through microtubule detyrosination. Nature 594:560–565. https://doi.org/10.1038/s41586-021-03573-5

    Article  CAS  Google Scholar 

  45. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959

    Article  CAS  Google Scholar 

  46. Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, Slater R, Palmer BM, Van Buren P, Meyer M, Redfield MM, Bull DA, Granzier HL, LeWinter MM (2015) Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131:1247–1259. https://doi.org/10.1161/CIRCULATIONAHA.114.013215

    Article  CAS  Google Scholar 

  47. Zile MR, Koide M, Sato H, Ishiguro Y, Conrad CH, Buckley JM, Morgan JP, Cooper G (1999) Role of microtubules in the contractile dysfunction of hypertrophied myocardium. J Am Coll Cardiol 33:250–260

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by funding from NIH/NHLBI R01-HL149891-01 to K.B.M and B.L.P., R01-HL133080 to B.L.P, a Leducq Fondation award TNE ID#: 673168 to B.L.P and K.B.M., Gund Family Fund support to K.B.M., and AHA CDA 856504 to M.A.C.

Author information

Authors and Affiliations

Authors

Contributions

AV, MAC, BLP, and KBM developed the research strategy. AV, MAC, EAC BLP, and KBM participated in the design of experiments. AV, MAC, EAC, JB, QM and CEL performed the experiments. All authors participated in the writing and review of the manuscript.

Corresponding author

Correspondence to Kenneth B. Margulies.

Ethics declarations

Conflict of interest

Drs. Prosser and Margulies report significant financial interests: invention disclosure/patent; inventor: US patent application No.15/959,181 USA 2018, composition and methods for improving heart function and treating heart failure.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vite, A., Caporizzo, M.A., Corbin, E.A. et al. Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic Res Cardiol 117, 41 (2022). https://doi.org/10.1007/s00395-022-00952-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-022-00952-5

Keywords

Navigation