Skip to main content

Advertisement

Log in

Atrial fibrillation is associated with alterations in HDL function, metabolism, and particle number

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Increased morbidity and mortality in atrial fibrillation (AF) are related to the pro-fibrotic, pro-thrombotic, and pro-inflammatory processes that underpin the disease. High-density lipoproteins (HDL) have anti-inflammatory, anti-oxidative, and anti-thrombotic properties. Functional impairment of HDL may, therefore, associate with AF initiation or progression. We studied indices of HDL quality and quantity of AF patients and healthy controls, including HDL-particle number, HDL cholesterol, apolipoprotein (apo) A–I levels, serum amyloid A (SAA) content and HDL-cholesterol efflux capacity, and paraoxonase activity of apoB-depleted serum. Serum samples were collected from AF patients (n = 91) before catheter ablation and from age- and sex-matched control subjects (n = 54). HDL-cholesterol efflux capacity was assessed in a validated assay using [3H]-cholesterol-labeled J774 macrophages. Lecithin–cholesterol acyltransferase (LCAT) and paraoxonase activities were assessed using fluorometric assays, SAA levels were determined by ELISA, and total and subclass HDL-particle number was assessed by nuclear magnetic resonance spectroscopy. ApoA-I levels were determined by immunoturbidimetry. HDL-cholesterol efflux capacity, HDL-particle number, apoA-I levels, and LCAT activity were markedly reduced in AF patients when compared to healthy individuals (all p < 0.001), whereas HDL-associated paraoxonase activity and SAA content were not altered (p = 0.578, p = 0.681). Notably, cholesterol efflux capacity, HDL-particle number, apoA-I levels as well as LCAT activity recovered following restoration of sinus rhythm (all p < 0.001). We identified marked alterations in HDL function, HDL maturation, and HDL-particle number in AF patients. Assessing HDL-particle number and function in AF may be used as a surrogate marker of AF onset and progression and may help identifying patients at high risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alonso A, Yin X, Roetker NS, Magnani JW, Kronmal RA, Ellinor PT, Chen LY, Lubitz SA, McClelland RL, McManus DD, Soliman EZ, Huxley RR, Nazarian S, Szklo M, Heckbert SR, Benjamin EJ (2014) Blood lipids and the incidence of atrial fibrillation: the multi-ethnic study of atherosclerosis and the Framingham Heart Study. J Am Heart Assoc. https://doi.org/10.1161/jaha.114.001211

    Article  PubMed  PubMed Central  Google Scholar 

  2. Artl A, Marsche G, Lestavel S, Sattler W, Malle E (2000) Role of serum amyloid A during metabolism of acute-phase HDL by macrophages. Arterioscler Thromb Vasc Biol 20:763–772

    Article  CAS  Google Scholar 

  3. Barter PJ, Nicholls S, Rye K-A, Anantharamaiah GM, Navab M, Fogelman AM (2004) Antiinflammatory properties of HDL. Circ Res. https://doi.org/10.1161/01.res.0000146094.59640.13

    Article  PubMed  Google Scholar 

  4. Bauer L, Kern S, Rogacev KS, Emrich IE, Zawada A, Fliser D, Heinemann A, Heine GH, Marsche G (2017) HDL cholesterol efflux capacity and cardiovascular events in patients with chronic kidney disease. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2016.10.054

    Article  PubMed  Google Scholar 

  5. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D (1998) Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98:946–952

    Article  CAS  Google Scholar 

  6. Besler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, Chroni A, Yonekawa K, Stein S, Schaefer N, Mueller M, Akhmedov A, Daniil G, Manes C, Templin C, Wyss C, Maier W, Tanner FC, Matter CM, Corti R, Furlong C, Lusis AJ, Eckardstein A, Fogelman AM, Lüscher TF, Landmesser U (2011) Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Investig. https://doi.org/10.1172/jci42946

    Article  PubMed  Google Scholar 

  7. Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang R, Yang X, Schmitt D, Fu X, Shao M, Brennan DM, Ellis SG, Brennan M-L, Allayee H, Lusis AJ, Hazen SL (2008) Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA. https://doi.org/10.1001/jama.299.11.1265

    Article  PubMed  Google Scholar 

  8. Birner-Gruenberger R, Schittmayer M, Holzer M, Marsche G (2014) Understanding high-density lipoprotein function in disease: recent advances in proteomics unravel the complexity of its composition and biology. Prog Lipid Res. https://doi.org/10.1016/j.plipres.2014.07.003

    Article  PubMed  Google Scholar 

  9. Büttner P, Schumacher K, Dinov B, Zeynalova S, Sommer P, Bollmann A, Husser D, Hindricks G, Kornej J (2018) Role of NT-proANP and NT-proBNP in patients with atrial fibrillation. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2018.03.021

    Article  PubMed  Google Scholar 

  10. Curcic S, Holzer M, Pasterk L, Knuplez E, Eichmann TO, Frank S, Zimmermann R, Schicho R, Heinemann A, Marsche G (2017) Secretory phospholipase A2 modified HDL rapidly and potently suppresses platelet activation. Sci Rep. https://doi.org/10.1038/s41598-017-08136-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Di Biase L, Mohanty P, Mohanty S, Santangeli P, Trivedi C, Lakkireddy D, Reddy M, Jais P, Themistoclakis S, Dello Russo A, Casella M, Pelargonio G, Narducci ML, Schweikert R, Neuzil P, Sanchez J, Horton R, Beheiry S, Hongo R, Hao S, Rossillo A, Forleo G, Tondo C, Burkhardt JD, Haissaguerre M, Natale A (2016) Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation. https://doi.org/10.1161/circulationaha.115.019406

    Article  PubMed  Google Scholar 

  12. Francone OL, Gurakar A, Fielding C (1989) Distribution and functions of lecithin: cholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterification and transfer of cell-derived cholesterol. J Biol Chem 264:7066–7072

    CAS  PubMed  Google Scholar 

  13. Holzer M, Schilcher G, Curcic S, Trieb M, Ljubojevic S, Stojakovic T, Scharnagl H, Kopecky CM, Rosenkranz AR, Heinemann A, Marsche G (2015) Dialysis modalities and HDL composition and function. J Am Soc Nephrol. https://doi.org/10.1681/asn.2014030309

    Article  PubMed  PubMed Central  Google Scholar 

  14. Holzer M, Trieb M, Konya V, Wadsack C, Heinemann A, Marsche G (2013) Aging affects high-density lipoprotein composition and function. Biochim Biophys Acta. https://doi.org/10.1016/j.bbalip.2013.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hopkins PN, Pottala JV, Nanjee MN (2015) A comparative study of four independent methods to measure LDL particle concentration. Atherosclerosis. https://doi.org/10.1016/j.atherosclerosis.2015.08.042

    Article  PubMed  Google Scholar 

  16. Issac TT, Dokainish H, Lakkis NM (2007) Role of inflammation in initiation and perpetuation of atrial fibrillation: a systematic review of the published data. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2007.06.054

    Article  PubMed  Google Scholar 

  17. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. https://doi.org/10.1056/nejmoa1001689

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener H-C, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, van Putte B, Vardas P (2016) 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. https://doi.org/10.1093/eurheartj/ehw210

    Article  PubMed  PubMed Central  Google Scholar 

  19. Korantzopoulos P, Kolettis TM, Galaris D, Goudevenos JA (2007) The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. Int J Cardiol. https://doi.org/10.1016/j.ijcard.2006.04.026

    Article  PubMed  Google Scholar 

  20. Mackey RH, Greenland P, Goff DC, Lloyd-Jones D, Sibley CT, Mora S (2012) High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2012.03.060

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, Merkely B, Pokushalov E, Sanders P, Proff J, Schunkert H, Christ H, Vogt J, Bänsch D (2018) Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. https://doi.org/10.1056/nejmoa1707855

    Article  PubMed  Google Scholar 

  22. Mineo C, Deguchi H, Griffin JH, Shaul PW (2006) Endothelial and antithrombotic actions of HDL. Circ Res. https://doi.org/10.1161/01.res.0000225982.01988.93

    Article  PubMed  Google Scholar 

  23. Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM (2009) Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. https://doi.org/10.1161/circulationaha.108.816181

    Article  PubMed  PubMed Central  Google Scholar 

  24. Navab M, Yu R, Gharavi N, Huang W, Ezra N, Lotfizadeh A, Anantharamaiah GM, Alipour N, van Lenten BJ, Reddy ST, Marelli D (2007) High-density lipoprotein: antioxidant and anti-inflammatory properties. Curr Atheroscler Rep 9:244–248

    Article  CAS  Google Scholar 

  25. Potočnjak I, Degoricija V, Trbušić M, Pregartner G, Berghold A, Marsche G, Frank S (2017) Serum concentration of HDL particles predicts mortality in acute heart failure patients. Sci Rep. https://doi.org/10.1038/srep46642

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, Neeland IJ, Yuhanna IS, Rader DR, de Lemos James A, Shaul PW (2014) HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. https://doi.org/10.1056/nejmoa1409065

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sattler K, Gräler M, Keul P, Weske S, Reimann C-M, Jindrová H, Kleinbongard P, Sabbadini R, Bröcker-Preuss M, Erbel R, Heusch G, Levkau B (2015) Defects of high-density lipoproteins in coronary artery disease caused by low sphingosine-1-phosphate content: correction by sphingosine-1-phosphate-loading. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2015.07.057

    Article  PubMed  Google Scholar 

  28. Sattler KJE, Elbasan S, Keul P, Elter-Schulz M, Bode C, Gräler MH, Bröcker-Preuss M, Budde T, Erbel R, Heusch G, Levkau B (2010) Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res Cardiol. https://doi.org/10.1007/s00395-010-0112-5

    Article  PubMed  Google Scholar 

  29. Spieker LE, Sudano I, Hürlimann D, Lerch PG, Lang MG, Binggeli C, Corti R, Ruschitzka F, Lüscher TF, Noll G (2002) High-density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation 105:1399–1402

    Article  CAS  Google Scholar 

  30. Tang WHW, Wu Y, Mann S, Pepoy M, Shrestha K, Borowski AG, Hazen SL (2011) Diminished antioxidant activity of high-density lipoprotein-associated proteins in systolic heart failure. Circ Heart Fail. https://doi.org/10.1161/circheartfailure.110.958348

    Article  PubMed  Google Scholar 

  31. Theilmeier G, Schmidt C, Herrmann J, Keul P, Schäfers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation. https://doi.org/10.1161/circulationaha.105.607135

    Article  PubMed  Google Scholar 

  32. Trieb M, Horvath A, Birner-Gruenberger R, Spindelboeck W, Stadlbauer V, Taschler U, Curcic S, Stauber RE, Holzer M, Pasterk L, Heinemann A, Marsche G (2016) Liver disease alters high-density lipoprotein composition, metabolism and function. Biochim Biophys Acta. https://doi.org/10.1016/j.bbalip.2016.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  33. Trieb M, Wolf P, Knuplez E, Weger W, Schuster C, Peinhaupt M, Holzer M, Trakaki A, Eichmann T, Lass A, Wadsack C, Schuligoi R, Heinemann A, Marsche G (2019) Abnormal composition and function of high-density lipoproteins in atopic dermatitis patients. Allergy. https://doi.org/10.1111/all.13620

    Article  PubMed  Google Scholar 

  34. Wilson PW, Garrison RJ, Castelli WP, Feinleib M, McNamara PM, Kannel WB (1980) Prevalence of coronary heart disease in the Framingham Offspring Study: role of lipoprotein cholesterols. Am J Cardiol 46:649–654

    Article  CAS  Google Scholar 

  35. Zewinger S, Drechsler C, Kleber ME, Dressel A, Riffel J, Triem S, Lehmann M, Kopecky C, Säemann MD, Lepper PM, Silbernagel G, Scharnagl H, Ritsch A, Thorand B, las de Heras Gala T, Wagenpfeil S, Koenig W, Peters A, Laufs U, Wanner C, Fliser D, Speer T, März W (2015) Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk. Eur Heart J. https://doi.org/10.1093/eurheartj/ehv352

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Austrian Science Fund FWF (FWF W1241, DK-MOLIN, and P22976-B18 to GM). PB and DH were supported by the Volkswagen Foundation Germany through the Lichtenberg professorship program to DH (#84901)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gunther Marsche or Petra Buettner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trieb, M., Kornej, J., Knuplez, E. et al. Atrial fibrillation is associated with alterations in HDL function, metabolism, and particle number. Basic Res Cardiol 114, 27 (2019). https://doi.org/10.1007/s00395-019-0735-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-019-0735-0

Keywords

Navigation