Skip to main content

Advertisement

Log in

AMPK-dependent nitric oxide release provides contractile support during hyperosmotic stress

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In different pathological situations, cardiac cells undergo hyperosmotic stress (HS) and cell shrinkage. This change in cellular volume has been associated with contractile dysfunction and cell death. Given that nitric oxide (NO) is a well-recognized modulator of cardiac contractility and cell survival, we evaluated whether HS increases NO production and its impact on the negative inotropic effect observed during this type of stress. Superfusing cardiac myocytes with a hypertonic solution (HS: 440 mOsm) decreased cell volume and increased NO-sensitive DAF-FM fluorescence compared with myocytes superfused with an isotonic solution (IS: 309 mOsm). When cells were exposed to HS in addition to different inhibitors: L-NAME (NO synthase inhibitor), nitroguanidine (nNOS inhibitor), and Wortmannin (eNOS inhibitor) cell shrinkage occurred in the absence of NO release, suggesting that HS activates nNOS and eNOS. Consistently, western blot analysis demonstrated that maintaining cardiac myocytes in HS promotes phosphorylation and thus, activation of nNOS and eNOS compared to myocytes maintained in IS. HS-induced nNOS and eNOS activation and NO production were also prevented by AMPK inhibition with Dorsomorphin (DORSO). In addition, the HS-induced negative inotropic effect was exacerbated in the presence of either L-NAME, DORSO, ODQ (guanylate cyclase inhibitor), or KT5823 (PKG inhibitor), suggesting that NO provides contractile support via a cGMP/PKG-dependent mechanism. Our findings suggest a novel mechanism of AMPK-dependent NO release in cardiac myocytes with putative pathophysiological relevance determined, at least in part, by its capability to reduce the extent of contractile dysfunction associated with hyperosmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen DG, Smith GL (1987) The effects of hypertonicity on tension and intracellular calcium concentration in ferret ventricular muscle. J Physiol 383:425–439. https://doi.org/10.1113/jphysiol.1987.sp016418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Balligand JL, Ungureanu-Longrois D, Simmons WW, Pimental D, Malinski TA, Kapturczak M, Taha Z, Lowenstein CJ, Davidoff AJ, Kelly RA et al (1994) Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem 269:27580–27588 (PMID: 7525557)

    CAS  PubMed  Google Scholar 

  3. Barbour HG, Loomis NM, Frankman RW, Warner JH (1924) Heat regulation and water exchange: V. The phase of blood dilution in man. J Physiol 59:300–305. https://doi.org/10.1113/jphysiol.1924.sp002185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339. https://doi.org/10.1038/416005a

    Article  CAS  PubMed  Google Scholar 

  5. Bibli SI, Andreadou I, Chatzianastasiou A, Tzimas C, Sanoudou D, Kranias E, Brouckaert P, Coletta C, Szabo C, Kremastinos DT, Iliodromitis EK, Papapetropoulos A (2015) Cardioprotection by H2S engages a cGMP-dependent protein kinase G/phospholamban pathway. Cardiovasc Res 106:432–442. https://doi.org/10.1093/cvr/cvv129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bice JS, Jones BR, Chamberlain GR, Baxter GF (2016) Nitric oxide treatments as adjuncts to reperfusion in acute myocardial infarction: a systematic review of experimental and clinical studies. Basic Res Cardiol 111:23. https://doi.org/10.1007/s00395-016-0540-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boo YC, Sorescu GP, Bauer PM, Fulton D, Kemp BE, Harrison DG, Sessa WC, Jo H (2003) Endothelial NO synthase phosphorylated at SER635 produces NO without requiring intracellular calcium increase. Free Radic Biol Med 35:729–741. https://doi.org/10.1016/s0891-5849(03)00397-6

    Article  CAS  PubMed  Google Scholar 

  8. Brette F, Calaghan SC, Lappin S, White E, Colyer J, Le Guennec JY (2000) Biphasic effects of hyposmotic challenge on excitation-contraction coupling in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 279:H1963–H1971. https://doi.org/10.1152/ajpheart.2000.279.4.h1963

    Article  CAS  PubMed  Google Scholar 

  9. Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de Montellano PR, Kemp BE (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443:285–289. https://doi.org/10.1016/s0014-5793(98)01705-0

    Article  CAS  PubMed  Google Scholar 

  10. Fassett JT, Hu X, Xu X, Lu Z, Zhang P, Chen Y, Bache RJ (2013) AMPK attenuates microtubule proliferation in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 304:H749–H758. https://doi.org/10.1152/ajpheart.00935.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814. https://doi.org/10.1074/jbc.271.37.22810

    Article  CAS  PubMed  Google Scholar 

  12. Fulop M, Tannenbaum H, Dreyer N (1973) Ketotic hyperosmolar coma. Lancet 2:635–639. https://doi.org/10.1016/s0140-6736(73)92478-1

    Article  CAS  PubMed  Google Scholar 

  13. Galvez A, Morales MP, Eltit JM, Ocaranza P, Carrasco L, Campos X, Sapag-Hagar M, Diaz-Araya G, Lavandero S (2001) A rapid and strong apoptotic process is triggered by hyperosmotic stress in cultured rat cardiac myocytes. Cell Tissue Res 304:279–285. https://doi.org/10.1007/s004410100358

    Article  CAS  PubMed  Google Scholar 

  14. Garbincius JF, Michele DE (2015) Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling. Proc Natl Acad Sci USA 112:13663–13668. https://doi.org/10.1073/pnas.1512991112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonano LA, Morell M, Burgos JI, Dulce RA, De Giusti VC, Aiello EA, Hare JM, Vila Petroff M (2014) Hypotonic swelling promotes nitric oxide release in cardiac ventricular myocytes: impact on swelling-induced negative inotropic effect. Cardiovasc Res 104:456–466. https://doi.org/10.1093/cvr/cvu230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hao J, Kim HS, Choi W, Ha TS, Ahn HY, Kim CH (2010) Mechanical stretch-induced protection against myocardial ischemia-reperfusion injury involves AMP-activated protein kinase. Korean J Physiol Pharmacol 14:1–9. https://doi.org/10.4196/kjpp.2010.14.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hayashi Y, Nishio M, Naito Y, Yokokura H, Nimura Y, Hidaka H, Watanabe Y (1999) Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J Biol Chem 274:20597–20602. https://doi.org/10.1074/jbc.274.29.20597

    Article  CAS  PubMed  Google Scholar 

  18. Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127. https://doi.org/10.1161/circresaha.108.186015

    Article  CAS  PubMed  Google Scholar 

  19. Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87:146–152. https://doi.org/10.1161/01.res.87.2.146

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69:315–382. https://doi.org/10.1152/physrev.1989.69.2.315

    Article  CAS  PubMed  Google Scholar 

  21. Howarth FC, Qureshi MA, White E (2002) Effects of hyperosmotic shrinking on ventricular myocyte shortening and intracellular Ca(2+) in streptozotocin-induced diabetic rats. Pflugers Arch 444:446–451. https://doi.org/10.1007/s00424-002-0830-0

    Article  CAS  PubMed  Google Scholar 

  22. Jourd’heuil D (2002) Increased nitric oxide-dependent nitrosylation of 4,5-diaminofluorescein by oxidants: implications for the measurement of intracellular nitric oxide. Free Radic Biol Med 33:676–684. https://doi.org/10.1016/s0891-5849(02)00955-3

    Article  PubMed  Google Scholar 

  23. Kaakinen M, Reichelt ME, Ma Z, Ferguson C, Martel N, Porrello ER, Hudson JE, Thomas WG, Parton RG, Headrick JP (2017) Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Res Cardiol 112:24. https://doi.org/10.1007/s00395-017-0613-6

    Article  PubMed  Google Scholar 

  24. Kakinuma Y, Zhang Y, Ando M, Sugiura T, Sato T (2004) Effect of electrical modification of cardiomyocytes on transcriptional activity through 5′-AMP-activated protein kinase. J Cardiovasc Pharmacol 44(Suppl 1):S435–S438. https://doi.org/10.1097/01.fjc.0000166318.91623.f9

    Article  CAS  PubMed  Google Scholar 

  25. Kimura C, Koyama T, Oike M, Ito Y (2000) Hypotonic stress-induced NO production in endothelium depends on endogenous ATP. Biochem Biophys Res Commun 274:736–740. https://doi.org/10.1006/bbrc.2000.3205

    Article  CAS  PubMed  Google Scholar 

  26. Kleindienst A, Battault S, Belaidi E, Tanguy S, Rosselin M, Boulghobra D, Meyer G, Gayrard S, Walther G, Geny B, Durand G, Cazorla O, Reboul C (2016) Exercise does not activate the beta3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. Basic Res Cardiol 111:40. https://doi.org/10.1007/s00395-016-0559-0

    Article  PubMed  Google Scholar 

  27. Lado MG, Sheu SS, Fozzard HA (1984) Effects of tonicity on tension and intracellular sodium and calcium activities in sheep heart. Circ Res 54:576–585. https://doi.org/10.1161/01.res.54.5.576

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Wan A (2015) Fluorescent probes for real-time measurement of nitric oxide in living cells. Analyst 140:7129–7141. https://doi.org/10.1039/c5an01628b

    Article  CAS  PubMed  Google Scholar 

  29. Loiselle DS, Stienen GJ, van Hardeveld C, van der Meulen ET, Zahalak GI, Daut J, Elzinga G (1996) The effect of hyperosmolality on the rate of heat production of quiescent trabeculae isolated from the rat heart. J Gen Physiol 108:497–514. https://doi.org/10.1085/jgp.108.6.497

    Article  CAS  PubMed  Google Scholar 

  30. Maldonado C, Cea P, Adasme T, Collao A, Diaz-Araya G, Chiong M, Lavandero S (2005) IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB. Biochem Biophys Res Commun 336:1112–1118. https://doi.org/10.1016/j.bbrc.2005.08.245

    Article  CAS  PubMed  Google Scholar 

  31. Martin C, Schulz R, Post H, Boengler K, Kelm M, Kleinbongard P, Gres P, Skyschally A, Konietzka I, Heusch G (2007) Microdialysis-based analysis of interstitial NO in situ: NO synthase-independent NO formation during myocardial ischemia. Cardiovasc Res 74:46–55. https://doi.org/10.1016/j.cardiores.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  32. Matsubara M, Hayashi N, Jing T, Titani K (2003) Regulation of endothelial nitric oxide synthase by protein kinase C. J Biochem 133:773–781. https://doi.org/10.1093/jb/mvg099

    Article  CAS  PubMed  Google Scholar 

  33. Murphy BA, Fakira KA, Song Z, Beuve A, Routh VH (2009) AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons. Am J Physiol Cell Physiol 297:C750–C758. https://doi.org/10.1152/ajpcell.00127.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Netti VA, Iovane AN, Vatrella MC, Magnani ND, Evelson PA, Zotta E, Fellet AL, Balaszczuk AM (2016) Dehydration affects cardiovascular nitric oxide synthases and caveolins in growing rats. Eur J Nutr 55:33–43. https://doi.org/10.1007/s00394-014-0820-y

    Article  CAS  PubMed  Google Scholar 

  35. Netti VA, Iovane AN, Vatrella MC, Zotta E, Fellet AL, Balaszczuk AM (2016) Effects of nitric oxide system and osmotic stress on Aquaporin-1 in the postnatal heart. Biomed Pharmacother 81:225–234. https://doi.org/10.1016/j.biopha.2016.03.050

    Article  CAS  PubMed  Google Scholar 

  36. Niu X, Zhao L, Li X, Xue Y, Wang B, Lv Z, Chen J, Sun D, Zheng Q (2014) beta3-Adrenoreceptor stimulation protects against myocardial infarction injury via eNOS and nNOS activation. PLoS ONE 9:e98713. https://doi.org/10.1371/journal.pone.0098713

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pasquel FJ, Umpierrez GE (2014) Hyperosmolar hyperglycemic state: a historic review of the clinical presentation, diagnosis, and treatment. Diabetes Care 37:3124–3131. https://doi.org/10.2337/dc14-0984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, Balligand JL, Sollott SJ (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3:867–873. https://doi.org/10.1038/ncb1001-867

    Article  CAS  PubMed  Google Scholar 

  39. Rassaf T, Poll LW, Brouzos P, Lauer T, Totzeck M, Kleinbongard P, Gharini P, Andersen K, Schulz R, Heusch G, Modder U, Kelm M (2006) Positive effects of nitric oxide on left ventricular function in humans. Eur Heart J 27:1699–1705. https://doi.org/10.1093/eurheartj/ehl096

    Article  CAS  PubMed  Google Scholar 

  40. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413. https://doi.org/10.1016/j.cardiores.2003.09.019

    Article  CAS  PubMed  Google Scholar 

  41. Takeda-Nakazawa H, Harada N, Shen J, Kubo N, Zenner HP, Yamashita T (2007) Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea. Hear Res 227:59–70. https://doi.org/10.1016/j.heares.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  42. Tsai EJ, Kass DA (2009) Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 122:216–238. https://doi.org/10.1016/j.pharmthera.2009.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ (1999) Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res 84:1020–1031. https://doi.org/10.1161/01.res.84.9.1020

    Article  CAS  PubMed  Google Scholar 

  44. Vitecek J, Reinohl V, Jones RL (2008) Measuring NO production by plant tissues and suspension cultured cells. Mol Plant 1:270–284. https://doi.org/10.1093/mp/ssm020

    Article  CAS  PubMed  Google Scholar 

  45. Xie H, Zhu PH (2006) Effect of osmotic stress on spontaneous calcium sparks in rat ventricular myocytes. Acta Pharmacol Sin 27:877–887. https://doi.org/10.1111/j.1745-7254.2006.00371.x

    Article  CAS  PubMed  Google Scholar 

  46. Xu X, Zhang P, Kwak D, Fassett J, Yue W, Atzler D, Hu X, Liu X, Wang H, Lu Z, Guo H, Schwedhelm E, Boger RH, Chen P, Chen Y (2017) Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction. Basic Res Cardiol 112:55. https://doi.org/10.1007/s00395-017-0644-z

    Article  PubMed  Google Scholar 

  47. Ziolo MT, Kohr MJ, Wang H (2008) Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 45:625–632. https://doi.org/10.1016/j.yjmcc.2008.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The technical support of Monica Rando and Omar Castillo and confocal imaging assistance of Lucia Pagola are gratefully acknowledged.

Funding

This study was supported by Grants PICT 1678 from FONCyT and PIP 0270 from CONICET to M.V.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vila Petroff.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morell, M., Burgos, J.I., Gonano, L.A. et al. AMPK-dependent nitric oxide release provides contractile support during hyperosmotic stress. Basic Res Cardiol 113, 7 (2018). https://doi.org/10.1007/s00395-017-0665-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-017-0665-7

Keywords

Navigation