Skip to main content
Log in

Reduced repolarization reserve due to anthracycline therapy facilitates torsade de pointes induced by IKr blockers

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Cytostatic agents such as anthracyclines may cause changes in the electrophysiologic properties of the heart. We hypothesized that anthracyclines facilitate life-threatening proarrhythmic side effects of cardiovascular and non-cardiovascular repolarization prolonging drugs.

Methods and results

The electrophysiologic effects of chronic administration of doxorubicin (Dox) were studied in ten rabbits, which were treated with Dox twice a week (1.5 mg/kg i. v.). A control group (11 rabbits) was given NaCl solution. Two of ten Dox rabbits died suddenly, the remaining animals showed mild clinical signs of heart failure after a period of six weeks. Echocardiography demonstrated a decrease in ejection fraction (pre treatment: 74 ± 23% to post treatment: 63 ± 16% (p <0.05)). In isolated hearts, action potential duration measured by eight simultaneously recorded monophasic action potentials (MAP) was similar in Dox and control hearts. However, in Dox rabbits, administration of the IKr–blocker erythromycin (150–300 μM) led to a significant greater prolongation of the mean MAP duration (63 ± 21ms vs 29 ± 12 ms, p <0.05) and the QT interval (100 ± 32ms vs 58 ± 17 ms, p <0.05) as compared to control. Moreover, IKr–block led to a more marked increase of dispersion of MAP90 in the Dox group as compared to control hearts (23 ± 7ms vs. 9 ± 4 ms). In the presence of hypokalemia more episodes of early afterdepolarizations and torsade de pointes occurred (p <0.05).

Conclusion

Even during the early phase of chemotherapeutic treatment,before significant QT-prolongation is present,anthracyclines lead to an increased sensitivity to the proarrhythmic potency of IKr-blocking drugs. Thus, anthracycline therapy reduces repolarization reserve and thereby represents a novel contributing factor for the development of lifethreatening proarrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boucek RJ Jr, Olson RD, Brenner DE, Ogunbunmi EM, Inui M, Fleischer S (1987) The major metabolite of doxorubicin is a potent inhibitor of membrane– associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. J Biol Chem 262:15851–15856

    PubMed  CAS  Google Scholar 

  2. Dessertenne F (1966) Ventricular tachycardia with 2 variable opposing foci. Arch Mal Coeur Vaiss 59:263–272

    PubMed  CAS  Google Scholar 

  3. Doherty JD, Cobbe SM (1990) Electrophysiological changes in animal model of chronic cardiac failure. Cardiovasc Res 24:309–316

    Article  PubMed  CAS  Google Scholar 

  4. Eckardt L, Breithardt G, Haverkamp W (2002) Electrophysiologic characterization of the antipsychotic drug sertindole in a rabbit heart model of torsade de pointes: low torsadogenic potential despite QT–prolongation. J Pharmacol Exp Ther 300:64–71

    Article  PubMed  CAS  Google Scholar 

  5. Eckardt L, Haverkamp W, Borggrefe M, Breithardt G (1998a) Experimental models of torsade de pointes. Cardiovasc Res 39:178–193

    Article  CAS  Google Scholar 

  6. Eckardt L, Haverkamp W, Göttker U, Madeja M, Johna R, Borggrefe M, Breithardt G (1998b) Divergent effect of acute ventricular dilatation on the electrophysiologic characteristics of d, l–sotalol and flecainide in the isolated rabbit heart. J Cardiovasc Electrophysiol 9:366–383

    CAS  Google Scholar 

  7. Eckardt L, Haverkamp W, Mertens H, Johna R, Clague JR, Boggrefe M, Breithardt G (1998c) Drug–related torsade de pointes in the isolated rabbit heart: Comparison of Clofilium, d, l–Sotalol and Erythromycin. J Cardiovasc Pharmacol 32:425–434

    Article  CAS  Google Scholar 

  8. Fisher NG, Marshall AJ (1999) Anthracycline– induced cardiomyopathy. Postgrad Med J 75:265–268

    PubMed  CAS  Google Scholar 

  9. Franz MR, Kirchhof PF, Fabritz CL, Zabel M (1995) Computer analysis of monophasic action potentials: Manual validation and clinically pertinent applications. Pacing Clin Electrophysiol 18:1666–1678

    PubMed  CAS  Google Scholar 

  10. Habbab MA, El Sherif N (1990) Druginduced torsades de pointes: role of early afterdepolarizations and dispersion of repolarization. Am J Med 89: 241–246

    Article  PubMed  CAS  Google Scholar 

  11. Haverkamp W, Breithardt G, Camm AJ, Janse MJ, Rosen MR, Antzelevitch C, Escande D, Franz M, Malik M, Moss A, Shah R (2000) The potential for QT prolongation and pro–arrhythmia by nonanti– arrhythmic drugs: Clinical and regulatory implications: Report on a Policy Conference of the European Society of Cardiology. Cardiovasc Res 47:219–233

    Article  PubMed  CAS  Google Scholar 

  12. Iwata N, Karasawa M, Omine M, Maekawa T, Suzuki T, Kawai Y (1984) Aclarubicin–associated QTc prolongation and ventricular fibrillation. Cancer Treat Rep 68:527–529

    PubMed  CAS  Google Scholar 

  13. Kelso EJ, Geraghty RF, McDermott BJ, Cameron CH, Nicholls DP, Silke B (1997) Characterisation of a cellular model of cardiomyopathy, in the rabbit, produced by chronic administration of the anthracycline, epirubicin. J Mol Cell Cardiol 29:3385–3397

    Article  PubMed  CAS  Google Scholar 

  14. Kishi S, Yoshida A, Yamauchi T, Tsutani H, Lee JD, Nakamura T, Naiki H, Ueda T (2000) Torsade de pointes associated with hypokalemia after anthracycline treatment in a patient with acute lymphocytic leukemia. Int J Hematol 71:172–179

    PubMed  CAS  Google Scholar 

  15. LaMonte CS, Yeh SD, Straus DJ (1986) Long–term follow–up of cardiac function in patients with Hodgkin’s disease treated with mediastinal irradiation and combination chemotherapy including doxorubicin. Cancer Treat Rep 70:439–444

    PubMed  CAS  Google Scholar 

  16. Maral R, Bourat G, Ducrot R, Fournel J, Ganter P, Julou L, Koenig F, Myon J, Pascal S, Pasquet J, Populaire P, de Ratuld Y, Werner GH (1967) Toxicologic study and experimental antitumor activity of rubidomycin (13. 057 R. P. ). Pathol Biol 15:903–908

    PubMed  CAS  Google Scholar 

  17. Milberg P, Eckardt L, Bruns HJ, Ramtin S, Reinsch N, Fleischer D, Kirchhof P, Fabritz L, Breithard G, Haverkamp W (2002) Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. J Pharmacol Exp Ther 303:218–225

    Article  PubMed  CAS  Google Scholar 

  18. Milberg P, Ramtin S, Monnig G, Osada N, Wasmer K, Breithardt G, Haverkamp W, Eckardt L (2004) Comparison of the in vitro electrophysiologic and proarrhythmic effects of amiodarone and sotalol in a rabbit model of acute atrioventricular block. J Cardiovasc Pharmacol 44:278–286

    Article  PubMed  CAS  Google Scholar 

  19. Milberg P, Reinsch N, Wasmer K, Monnig G, Stypmann J, Osada N, Breithardt G, Haverkamp W, Eckardt L (2005a) Transmural dispersion of repolarization as a key factor of arrhythmogenicity in a novel intact heart model of LQT3. Cardiovasc Res 65:397–404

    Article  CAS  Google Scholar 

  20. Milberg P, Reinsch N, Stypmann J, Osada N, Mönnig G, Wasmer K, Haverkamp W, Breithard G, Eckardt L (2005b) Verapamil prevents torsade de pointes by reduction of transmural dispersion of repolarization and suppression of early afterdepolarizations in an intact model of LQT3. Basic Res Cardiol 100:1–7

    Article  CAS  Google Scholar 

  21. Morioka M, Kakinoki Y, Katagiri M, Iwasaki H, Gotohda Y, Kobayashi T, Tanaka M, Sakurada K, Miyazaki T (1991) Torsade de pointes ventricular tachycardia in a patient with acute myelocytic leukemia. Rinsho Ketsueki 32:1009–1011

    PubMed  CAS  Google Scholar 

  22. Perik PJ, van den Berg MP, de Vries EG, Van Veldhuisen DJ (2004) Experimental animal model for anthracycline–induced heart failure. Eur J Heart Fail 6:375–376

    Article  PubMed  Google Scholar 

  23. Pye MP, Cobbe SM (1996) Arrhythmogenesis in experimental models of heart failure: The role of increased load. Cardiovasc Res 32:248–257

    Article  PubMed  CAS  Google Scholar 

  24. Roden DM (1998) Taking the “idio” out of “idiosyncratic”: predicting torsades de pointes. Pacing Clin Electrophysiol 21:1029–1034

    Article  PubMed  CAS  Google Scholar 

  25. Sarubbi B, Orditura M, Ducceschi V, De Vita F, Santangelo L, Ciaramella F, Catalano G, Iacono A (1997) Ventricular repolarization time indexes following anthracycline treatment. Heart Vessels 12:262–266

    PubMed  CAS  Google Scholar 

  26. Schultz PN, Beck ML, Stava C, Vassilopoulou– Sellin R (2003) Health profiles in 5836 long–term cancer survivors. Int J Cancer 104:488–495

    Article  PubMed  CAS  Google Scholar 

  27. Simunek T, Klimtova I, Kaplanova J, Mazurova Y, Adamcova M, Sterba M, Hrdina R, Gersl V (2004) Rabbit model for in vivo study of anthracycline–induced heart failure and for the evaluation of protective agents. Eur J Heart Fail 6:377–387

    Article  PubMed  CAS  Google Scholar 

  28. Steinherz L, Steinherz P (1991) Delayed cardiac toxicity from anthracycline therapy. Pediatrician 18:49–52

    PubMed  CAS  Google Scholar 

  29. Tan C, Tasaka H, Yu KP, Murphy ML, Karnofsky DA (1967) Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer 20:333–353

    Article  PubMed  CAS  Google Scholar 

  30. Tomaselli GF, Zipes DP (2004) What causes sudden death in heart failure? Circ Res 95:754–763

    Article  PubMed  CAS  Google Scholar 

  31. Tsuji Y, Opthof T, Kamiya K, Yasui K, Liu W, Lu Z, Kodama I (2000) Pacing–induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res 48:300–309

    Article  PubMed  CAS  Google Scholar 

  32. Verduyn SC, Vos MA, van der ZJ, van der Hulst FF, Wellens HJ (1997) Role of interventricular dispersion of repolarization in acquired torsade–de–pointes arrhythmias: reversal by magnesium. Cardiovasc Res 34:453–463

    Article  PubMed  CAS  Google Scholar 

  33. Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP, Wellens HJ, Lazzara R (2000) Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res 46:376–392

    Article  PubMed  CAS  Google Scholar 

  34. Wortman JE, Lucas VS, Jr. , Schuster E, Thiele D, Logue GL (1979) Sudden death during doxorubicin administration. Cancer 44:1588–1591

    Article  PubMed  CAS  Google Scholar 

  35. Yeh ET, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C, Durand JB, Gibbs H, Zafarmand AA, Ewer MS (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Milberg MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milberg, P., Fleischer, D., Stypmann, J. et al. Reduced repolarization reserve due to anthracycline therapy facilitates torsade de pointes induced by IKr blockers. Basic Res Cardiol 102, 42–51 (2007). https://doi.org/10.1007/s00395-006-0609-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-006-0609-0

Key words

Navigation