Skip to main content

Advertisement

Log in

Administration of Lactobacillus plantarum Lp62 to dam rats at the end of delivery and during lactation affects TGF-β1 level and nutritional milk composition, and body weight of pups

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Lactobacillus plantarum Lp62 is a lactic acid bacteria strain that has been isolated from cocoa beans and exhibited probiotic potential. The influence of oral administration of L. plantarum Lp62 on the growth of rat’s pups; on yield, cytokines and milk composition was studied.

Methods

Lactobacillus plantarum Lp62 is a lactic acid bacteria strain that has been isolated from cocoa beans. It was administered daily by gavage to Wistar rats (n = 8), from the 7th day before delivery and for 20 days during lactation, in a concentration of 1.44 × 109 CFU/rat. The dam and pups were weighed and milk was collected at 12th and 19th day for determination of protein, triglycerides, cholesterol and lactose by colorimetric assays. TGF-β1 milk levels were analyzed by ELISA. The mammary glands of rats were removed for histological analysis. To detect statistical differences between the groups, tests of mean differences at a significance level of 5% was performed.

Results

Supplementation with L. plantarum L62 resulted in significant higher weight of pups (p < 0.05), with similar weight on dams (p > 0.05). The milk yield was not altered by L. plantarum treatment, but the levels of protein, triglycerides and cholesterol were increased (p < 0.05), with no difference in lactose concentration (p > 0.05). Levels of TGF-β1 were higher in the milk of L. plantarum treatment (p < 0.05).

Conclusions

The treatment of dams at the end of pregnancy and lactation with L. plantarum Lp62 increased nutritional content of milk, probably contributing to the higher weight of the pups. The higher levels of TGF-β1 in the milk, could promote immune benefits to the pups. Further studies in this field are needed to prove the potential use of L. plantarum Lp62 as a probiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Damaceno QS, Souza JP, Nicoli JR et al (2017) Evaluation of Potential Probiotics Isolated from Human Milk and Colostrum. Probiotics Antimicrob Proteins 1–9. https://doi.org/10.1007/s12602-017-9270-1

  2. Victora CG, Bahl R, Barros AJD et al (2016) Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387:475–490. https://doi.org/10.1016/S0140-6736(15)01024-7

    Article  PubMed  Google Scholar 

  3. Fernández L, Langa S, Martín V, et al (2013) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69:1–10

    Article  CAS  PubMed  Google Scholar 

  4. Rodríguez JM (2014) The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 5:779–784. https://doi.org/10.3945/an.114.007229

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martin R, Langa S, Reviriego C et al (2003) Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143:754–758. https://doi.org/10.1016/j.jpeds.2003.09.028

    Article  CAS  PubMed  Google Scholar 

  6. FAO/WHO (2001) Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Expert Consult Rep Córdoba, Argentina Food Agric Organ United Nations World Heal Organ, pp 1–4

  7. Agostoni C, Axelsson I, Braegger C et al (2004) Probiotic bacteria in dietetic products for infants: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 38:365–374

    Article  PubMed  Google Scholar 

  8. Rautava S, Luoto R, Salminen S, Isolauri E (2012) Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 9:565–576. https://doi.org/10.1038/nrgastro.2012.144

    Article  CAS  PubMed  Google Scholar 

  9. Shreedhar JN, Patil M, Kumar P (2016) Effect of probiotics supplementation on milk yield and its composition in lactating holstein Fresien and Deoni cross bred cows. J Med Bioeng 5:19–23. https://doi.org/10.12720/jomb.5.1.19-23

    Article  CAS  Google Scholar 

  10. Bula S, Ositis U, Strikauska S, Degola L (2012) Impact of probiotic supplement on the weight lose of sows and weaning weight of Piglet. J Environ Sci Eng 1:1122–1129

    CAS  Google Scholar 

  11. Alexopoulos C, Karagiannidis A, Kritas SK et al (2001) Field evaluation of a bioregulator containing live Bacillus cereus spores on health status and performance of sows and their litters. J Vet Med A Physiol Pathol Clin Med 48:137–145

    Article  CAS  PubMed  Google Scholar 

  12. Zhao P, Upadhaya SD, Li J, Kim I (2015) Comparison effects of dietary iron dextran and bacterial-iron supplementation on growth performance, fecal microbial flora, and blood profiles in sows and their litters. Anim Sci J 86:937–942. https://doi.org/10.1111/asj.12378

    Article  CAS  PubMed  Google Scholar 

  13. Chiquette J (2009) The role of probiotics in promoting dairy production. WCDS Adv Dairy Technol 21:143–157

    Google Scholar 

  14. Felis GE, Dellaglio F (2007) Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol 8:44–61

    CAS  PubMed  Google Scholar 

  15. Agaliya PJ, Jeevaratnam K (2012) Screening of Lactobacillus plantarum isolated from fermented idli batter for probiotic properties. Afr J Biotechnol 11:12856–12864. https://doi.org/10.5897/AJB12.1825

    Article  Google Scholar 

  16. Min Hsiu C, Shu Feng H, Jiau Hua C et al (2016) Antibacterial activity Lactobacillus plantarum isolated from fermented vegetables and investigation of the plantaricin genes. Afr J Microbiol Res 10:796–803. https://doi.org/10.5897/AJMR2016.7922

    Article  CAS  Google Scholar 

  17. Bringel F, Castioni A, Olukoya DK et al (2005) Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Microbiol 55:1629–1634. https://doi.org/10.1099/ijs.0.63333-0

    Article  CAS  PubMed  Google Scholar 

  18. Khemariya P, Singh S, Jaiswal N, Chaurasia SNS (2016) Isolation and Identification of Lactobacillus plantarum from Vegetable Samples. Food Biotechnol 30:49–62. https://doi.org/10.1080/08905436.2015.1132428

    Article  CAS  Google Scholar 

  19. Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Berbegal C, Pena N, Russo P et al (2016) Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiol 57:187–194. https://doi.org/10.1016/j.fm.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Ji H, Zhang D et al (2011) Assessment of probiotic properties of Lactobacillus plantarum ZLP001 isolated from gastrointestinal tract of weaning pigs. Afr J Biotechnol 10:11303–11308. https://doi.org/10.5897/AJB11.255

    Article  CAS  Google Scholar 

  22. Al Kassaa I, Hamze M, Hober D et al (2014) Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon. Microb Ecol 67:722–734. https://doi.org/10.1007/s00248-014-0384-7

    Article  PubMed  Google Scholar 

  23. Fiocco D, Capozzi V, Collins M et al (2010) Characterization of the CtsR stress response regulon in Lactobacillus plantarum. J Bacteriol 192:896–900. https://doi.org/10.1128/JB.01122-09

    Article  CAS  PubMed  Google Scholar 

  24. Ferreira T, Melo TA, Almeida ME et al (2016) Immunomodulatory effects of Lactobacillus plantarum Lp62 on intestinal epithelial and mononuclear cells. BioMed Res. https://doi.org/10.1155/2016/8404156

    Article  Google Scholar 

  25. Verna EC, Lucak S (2010) Use of probiotics in gastrointestinal disorders: what to recommend? Therap Adv Gastroenterol 3:307–319. https://doi.org/10.1177/1756283X10373814

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guarner F, Aamir KG, James G et al (2011) Probióticos e prebióticos. World Gastroenterol Organ Pract Guidel, pp 1–29

  27. Akers RM, Capuco AV, Keys JE (2006) Mammary histology and alveolar cell differentiation during late gestation and early lactation in mammary tissue of beef and dairy heifers. Livest Sci 105:44–49. https://doi.org/10.1016/j.livsci.2006.04.026

    Article  Google Scholar 

  28. Grigor MR, Poczwa Z, Arthur PG (1986) Milk lipid synthesis and secretion during milk stasis in the rat. J Nutr 116:1789–1797

    Article  CAS  PubMed  Google Scholar 

  29. Oliveira E, Pinheiro CR, Santos-Silva AP et al (2010) Nicotine exposure affects mother’s and pup’s nutritional, biochemical, and hormonal profiles during lactation in rats. J Endocrinol 205:159–170. https://doi.org/10.1677/JOE-09-0430

    Article  CAS  PubMed  Google Scholar 

  30. Troina AA, Figueiredo MS, Passos MCF et al (2012) Flaxseed bioactive compounds change milk, hormonal and biochemical parameters of dams and offspring during lactation. Food Chem Toxicol 50:2388–2396. https://doi.org/10.1016/j.fct.2012.04.040

    Article  CAS  PubMed  Google Scholar 

  31. Costa TH, Dorea JG (1992) Concentration of fat, protein, lactose and energy in milk of mothers using hormonal contraceptives. Ann Trop Paediatr 12:203–209

    Article  CAS  PubMed  Google Scholar 

  32. Penha-Silva N, Fonseca AM, Brito AG et al (2004) Determinação rápida de açúcares redutores com ácido pícrico para uso biotecnológico. Biosci J 20:183–188

    Google Scholar 

  33. Smilowitz JT, Moya J, Breck MA et al (2017) Erratum to: Safety and tolerability of Bifidobacterium longum subspecies infantis EVC001 supplementation in healthy term breastfed infants: a phase I clinical trial. BMC Pediatr 17:180. https://doi.org/10.1186/s12887-017-0932-7

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baldassarre ME, Di Mauro A, Mastromarino P et al (2016) Administration of a multi-strain probiotic product to women in the perinatal period differentially affects the breast milk cytokine profile and may have beneficial effects on neonatal gastrointestinal functional symptoms. A randomized clinical trial. Nutrients 8:1–13. https://doi.org/10.3390/nu8110677

    Article  CAS  Google Scholar 

  35. Knight CH, Docherty AH, Peaker M (1984) Milk yield in rats in relation to activity and size of the mammary secretory cell population. J Dairy Res 51:29–35

    Article  CAS  PubMed  Google Scholar 

  36. Morag M (1970) Estimation of milk yield in the rat. Lab Anim 4:259–272. https://doi.org/10.1258/002367770781071671

    Article  CAS  PubMed  Google Scholar 

  37. Brody S, Nisbet R (1938) Growth and development with special reference to domestic animals. 47. A comparison of the amounts and energetic efficiencies of milk production in rat and dairy cow. Growth Dev with Spec Ref to Domest Anim 47 A Comp Amount Energ Effic milk Prod rat dairy cow

  38. Reddy RR, Donker JD (1965) Lactation studies.vi. Effects of different intervals between nursing and duration of suckling on rate of milk production in sprague-dawley rats in the first lactation. J Dairy Sci 48:978–982

    Article  CAS  PubMed  Google Scholar 

  39. Baldassarre ME, Di Mauro A, Mastromarino P et al (2016) Administration of a multi-strain probiotic product to women in the perinatal period differentially affects the breast milk cytokine profile and may have beneficial effects on neonatal gastrointestinal functional symptoms. A randomized clinical trial. Nutrients 8:. https://doi.org/10.3390/nu8110677

  40. Kritas SK, Govaris A, Christodoulopoulos G, Burriel AR (2006) Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe’s feed on sheep milk production and young lamb mortality. J Vet Med A Physiol Pathol Clin Med 53:170–173. https://doi.org/10.1111/j.1439-0442.2006.00815.x

    Article  CAS  PubMed  Google Scholar 

  41. Chiquette J, Allison MJ, Rasmussen MA (2008) Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. J Dairy Sci 91:3536–3543. https://doi.org/10.3168/jds.2007-0849

    Article  CAS  PubMed  Google Scholar 

  42. Stein DR, Allen DT, Perry EB et al (2006) Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction. J Dairy Sci 89:111–125. https://doi.org/10.3168/jds.S0022-0302(06)72074-4

    Article  CAS  PubMed  Google Scholar 

  43. Alexopoulos C, Georgoulakis IE, Tzivara A et al (2004) Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J Anim Physiol Anim Nutr 88:381–392

    Article  CAS  Google Scholar 

  44. Singh SK, Niranjan PS, Singh UB et al (2009) Effects of dietary supplementation of probiotics on broiler chicken. Anim Nutr Feed Technol 9:23–24

    Google Scholar 

  45. Penna FJ, Filho LA, Calcado AC et al (2000) [Up-to-date clinical and experimental basis for the use of probiotics]. J Pediatr (Rio J) 76(Suppl 1):S209-17

    Google Scholar 

  46. Purcell RH, Sun B, Pass LL et al (2011) Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup ingestive behavior. Physiol Behav 104:474–479. https://doi.org/10.1016/j.physbeh.2011.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Del Prado M, Delgado G, Villalpando S (1997) Maternal lipid intake during pregnancy and lactation alters milk composition and production and litter growth in rats. J Nutr 127:458–462

    Article  PubMed  Google Scholar 

  48. Suzer C, Çoban D, Kamaci HO et al (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: Effects on growth performance and digestive enzyme activities. Aquaculture 280:140–145. https://doi.org/10.1016/j.aquaculture.2008.04.020

    Article  CAS  Google Scholar 

  49. Jost T, Lacroix C, Braegger CP et al (2014) Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 16:2891–2904. https://doi.org/10.1111/1462-2920.12238

    Article  CAS  PubMed  Google Scholar 

  50. Jimenez E, Delgado S, Fernandez L et al (2008) Assessment of the bacterial diversity of human colostrum and screening of staphylococcal and enterococcal populations for potential virulence factors. Res Microbiol 159:595–601. https://doi.org/10.1016/j.resmic.2008.09.001

    Article  PubMed  Google Scholar 

  51. Arroyo R, Martin V, Maldonado A et al (2010) Treatment of infectious mastitis during lactation: antibiotics versus oral administration of Lactobacilli isolated from breast milk. Clin Infect Dis 50:1551–1558. https://doi.org/10.1086/652763

    Article  CAS  PubMed  Google Scholar 

  52. Bearfield C, Davenport ES, Sivapathasundaram V, Allaker RP (2002) Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG 109:527–533

    Article  PubMed  Google Scholar 

  53. Jimenez E, Fernandez L, Marin ML et al (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51:270–274. https://doi.org/10.1007/s00284-005-0020-3

    Article  CAS  PubMed  Google Scholar 

  54. Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65. https://doi.org/10.1126/scitranslmed.3008599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jimenez E, Fernandez L, Maldonado A et al (2008) Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Appl Environ Microbiol 74:4650–4655. https://doi.org/10.1128/AEM.02599-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abrahamsson TR, Sinkiewicz G, Jakobsson T et al (2009) Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life. J Pediatr Gastroenterol Nutr 49:349–354. https://doi.org/10.1097/MPG.0b013e31818f091b

    Article  PubMed  Google Scholar 

  57. Jimenez E, Delgado S, Maldonado A et al (2008) Staphylococcus epidermidis: a differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol 8:143. https://doi.org/10.1186/1471-2180-8-143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martin V, Maldonado-Barragan A, Moles L et al (2012) Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 28:36–44. https://doi.org/10.1177/0890334411424729

    Article  PubMed  Google Scholar 

  59. Karlsson CLJ, Molin G, Fåk F et al (2011) Effects on weight gain and gut microbiota in rats given bacterial supplements and a high-energy-dense diet from fetal life through to 6 months of age. Br J Nutr 106:887–895. https://doi.org/10.1017/S0007114511001036

    Article  CAS  PubMed  Google Scholar 

  60. Langa S (2006) Interactions between lactic acid bacteria, intestinal epithelial cells and immune cells: development of in vitro models. Complutense University of Madrid, Madrid

    Google Scholar 

  61. Fernández L, Langa S, Martín V et al (2013) The human milk microbiota: Origin and potential roles in health and disease. Pharmacol Res 69:1–10. https://doi.org/10.1016/j.phrs.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  62. Zivkovic AM, German JB, Lebrilla CB, Mills DA (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci 108:4653–4658. https://doi.org/10.1073/pnas.1000083107

    Article  PubMed  Google Scholar 

  63. Asakuma S, Hatakeyama E, Urashima T et al (2011) Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 286:34583–34592. https://doi.org/10.1074/jbc.M111.248138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maldonado J, Lara-Villoslada F, Sierra S et al (2010) Safety and tolerance of the human milk probiotic strain Lactobacillus salivarius CECT5713 in 6-month-old children. Nutrition 26:1082–1087

    Article  PubMed  Google Scholar 

  65. Gil-Campos M, Lopez M, Rodriguez-Benítez M et al (2012) Lactobacillus fermentum CECT 5716 is safe and well tolerated in infants of 1–6 months of age: a randomized controlled trial. Pharmacol Res 65:231–238

    Article  PubMed  Google Scholar 

  66. Dasanayake AP, Li Y, Wiener H et al (2005) Salivary Actinomyces naeslundii genospecies 2 and Lactobacillus casei levels predict pregnancy outcomes. J Periodontol 76:171–177. https://doi.org/10.1902/jop.2005.76.2.171

    Article  PubMed  Google Scholar 

  67. Olivares M, Diaz-Ropero MP, Sierra S et al (2007) Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition 23:254–260. https://doi.org/10.1016/j.nut.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  68. Diaz-Ropero MP, Martin R, Sierra S et al (2007) Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J Appl Microbiol 102:337–343. https://doi.org/10.1111/j.1365-2672.2006.03102.x

    Article  CAS  PubMed  Google Scholar 

  69. Olivares M, MP D-R RM et al (2006) Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J Appl Microbiol 101:72–79

    Article  CAS  PubMed  Google Scholar 

  70. Saez-Lara MJ, Gomez-Llorente C, Plaza-Diaz J, Gil A (2015) The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. Biomed Res Int 2015:505878. https://doi.org/10.1155/2015/505878

  71. Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300:57–62. https://doi.org/10.1016/j.ijmm.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  72. Lonnerdal B (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77:1537S–1543S

    Article  PubMed  Google Scholar 

  73. Field CJ (2005) The immunological components of human milk and their effect on immune development in infants. J Nutr 135:1–4

    Article  CAS  PubMed  Google Scholar 

  74. Kosaka N, Izumi H, Sekine K, Ochiya T (2010) microRNA as a new immune-regulatory agent in breast milk. Silence 1:7. https://doi.org/10.1186/1758-907X-1-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oddy WH, Rosales F (2010) A systematic review of the importance of milk TGF-beta on immunological outcomes in the infant and young child. Pediatr Allergy Immunol 21:47–59. https://doi.org/10.1111/j.1399-3038.2009.00913.x

    Article  PubMed  Google Scholar 

  76. Bottcher MF, Abrahamsson TR, Fredriksson M et al (2008) Low breast milk TGF-beta2 is induced by Lactobacillus reuteri supplementation and associates with reduced risk of sensitization during infancy. Pediatr Allergy Immunol 19:497–504. https://doi.org/10.1111/j.1399-3038.2007.00687.x

    Article  PubMed  Google Scholar 

  77. Rautava S, Kalliomaki M, Isolauri E (2002) Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. J Allergy Clin Immunol 109:119–121

    Article  PubMed  Google Scholar 

  78. Kalliomaki M, Ouwehand A, Arvilommi H et al (1999) Transforming growth factor-beta in breast milk: a potential regulator of atopic disease at an early age. J Allergy Clin Immunol 104:1251–1257

    Article  CAS  PubMed  Google Scholar 

  79. Williamson DH (1980) Integration of metabolism in tissues of the lactating rat. FEBS Lett 117:K93–K105. https://doi.org/10.1016/0014-5793(80)80574-6

    Article  PubMed  Google Scholar 

  80. Hawkins RA, Williamson DH (1972) Measurements of substrate uptake by mammary gland of the rat. Biochem J 129:1171–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Atabai K, Sheppard D, Werb Z (2007) Roles of the innate immune system in mammary gland remodeling during involution. J Mammary Gland Biol Neoplasia 12:37–45. https://doi.org/10.1007/s10911-007-9036-6

    Article  PubMed  PubMed Central  Google Scholar 

  82. Akers RM, Capuco AV, Keys JE (2017) Mammary histology and alveolar cell differentiation during late gestation and early lactation in mammary tissue of beef and dairy heifers. Livest Sci 105:44–49. https://doi.org/10.1016/j.livsci.2006.04.026

    Article  Google Scholar 

  83. Masso-Welch PA, Darcy KM, Stangle-Castor NC, Ip MM (2000) A developmental atlas of rat mammary gland histology. J Mammary Gland Biol Neoplasia 5:165–185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research was supported by Grants and scholarships of the National Council for Scientific and Technological Development (CNPq–PIBIC), Federal University of Bahia (PIBIC), The State of Bahia Research Foundation (FAPESB–REDE 11/2014; PIBIC) and Coordination for the Enhancement of Higher Education Personnel (CAPES), Tutorial Educational Program (FNDE/MEC/SESU). The authors are also very grateful to all student volunteers who took part in this study and to Professor Carla Cristina Romano form State University of Santa Cruz for microorganism donation. R.Y., A.P.T.U., L.M.M., M.P.C., G.V. conceived and designed the study; G.C.M., A.M.N.R, B.M.S.S., A.M.B, D.C.A.S., E.S.P., E.P.S., M.L.A., R.A.S., M.V.S., T.B.R., A.V.M., was responsible for generation, collection, assembly, analysis and interpretation of data; G.C.M., M.R.T.C., R.Y. performed the statistical analysis; G.C.M., R.Y. wrote the manuscript, L.M.M., M.P.C., G.V. revised the manuscript. All the authors approved the final version of the manuscript before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regiane Yatsuda.

Ethics declarations

Ethical approval

Animal care and research protocols were in accordance with the principles and guidelines adopted by the Brazilian College of Animal Experimentation (COBEA) and were approved by the Ethical Committee for Animal Research of the Federal University of Bahia, with Protocol Number 035/2015.

Conflict of interest

There are no actual or potential conflicts of interest that might influence judgment on the part of any author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messias, G.C., Rocha, A.M.N., Santos, B.M.S. et al. Administration of Lactobacillus plantarum Lp62 to dam rats at the end of delivery and during lactation affects TGF-β1 level and nutritional milk composition, and body weight of pups. Eur J Nutr 58, 1137–1146 (2019). https://doi.org/10.1007/s00394-018-1628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1628-y

Keywords

Navigation