Skip to main content

Advertisement

Log in

Nutrient and food intakes of middle-aged adults at low risk of cardiovascular disease: the international study of macro-/micronutrients and blood pressure (INTERMAP)

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Individuals with favorable levels of readily measured cardiovascular disease (CVD) risk factors (low risk, LR) experience low long-term rates of CVD mortality and greater longevity. The purpose of the current study was to compare nutrient/food intakes of LR participants with participants not LR in the INTERMAP study.

Methods

Men and women (40–59 years) from 17 population samples in four countries (China, Japan, UK, US) provided four 24-h dietary recalls and two timed 24-h urine collections. LR was defined as meeting all of the following CVD risk criteria: systolic/diastolic blood pressure (BP) ≤120/≤80 mmHg; no drug treatment for high BP, hyperlipidemia, or CVD; non-smoking; BMI <25.0 kg/m2 (US, UK) or <23.0 kg/m2 (China, Japan); alcohol consumption <26.0 g/day (men)/<13.0 g/day (women); and no history of diabetes or CVD. Multivariate logistic regression was used to examine associations of nutrient/food intakes with LR.

Results

LR individuals reported higher intake of vegetable protein, fiber, magnesium, non-heme iron, potassium; lower energy intake; lower intake of cholesterol, saturated fatty acids, animal protein; and lower 24-h urinary sodium compared with individuals not LR. With regard to foods, LR individuals reported higher intake of fruits, vegetables, grains, pasta/rice, fish; lower intakes of meats, processed meats, high-fat dairy, and sugar-sweetened beverages than individuals not LR.

Conclusions

Lower energy intake and differential intake of multiple specific nutrients and foods are characteristic of individuals at low risk for developing CVD. Identification of dietary habits associated with LR is important for further development of public health efforts aimed at reduction/prevention of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stamler J, Dyer AR, Shekelle RB, Neaton J, Stamler R (1993) Relationship of baseline major risk factors to coronary and all-cause mortality, and to longevity: findings from long-term follow-up of Chicago cohorts. Cardiology 82:191–222

    Article  CAS  Google Scholar 

  2. Daviglus ML, Stamler J, Pirzada A, Yan LL, Garside DB, Liu K, Wang R, Dyer AR, Lloyd-Jones DM, Greenland P (2004) Favorable cardiovascular risk profile in young women and long-term risk of cardiovascular and all-cause mortality. JAMA 292:1588–1592

    Article  CAS  Google Scholar 

  3. Daviglus ML, Liu K, Pirzada A, Yan LL, Garside DB, Feinglass J, Guralnik JM, Greenland P, Stamler J (2003) Favorable cardiovascular risk profile in middle age and health-related quality of life in older age. Arch Intern Med 163:2460–2468

    Article  Google Scholar 

  4. Stamler J, Stamler R, Neaton JD, Wentworth D, Daviglus ML, Garside D, Dyer AR, Liu K, Greenland P (1999) Low risk-factor profile and long-term cardiovascular and noncardiovascular mortality and life expectancy: findings for 5 large cohorts of young adult and middle-aged men and women. JAMA 282:2012–2018

    Article  CAS  Google Scholar 

  5. Ford ES, Li C, Zhao G, Pearson WS, Capewell S (2009) Trends in the prevalence of low risk factor burden for cardiovascular disease among United States adults. Circulation 120:1181–1188

    Article  Google Scholar 

  6. Marmot M, Elliott P (2005) Coronary heart disease epidemiology, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  7. Kromhout D, Menotti A, Kesteloot H, Sans S (2002) Prevention of coronary heart disease by diet and lifestyle: evidence from prospective cross-cultural, cohort, and intervention studies. Circulation 105:893–898

    Article  Google Scholar 

  8. Connor WE (1999) Diet-heart research in the first part of the 20th century. Acta Cardiol 54:135–139

    CAS  Google Scholar 

  9. Mozaffarian D, Appel LJ, Van Horn L (2011) Components of a cardioprotective diet: new insights. Circulation 123:2870–2891

    Article  Google Scholar 

  10. Maruthur NM, Wang NY, Appel LJ (2009) Lifestyle interventions reduce coronary heart disease risk: results from the PREMIER trial. Circulation 119:2026–2031

    Article  Google Scholar 

  11. Mellen PB, Walsh TF, Herrington DM (2008) Whole grain intake and cardiovascular disease: a meta-analysis. Nutr Metab Cardiovasc Dis 18:283–290

    Article  Google Scholar 

  12. Mente A, de Koning L, Shannon HS, Anand SS (2009) A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med 169:659–669

    Article  CAS  Google Scholar 

  13. Stamler J, Elliott P, Dennis B, Dyer AR, Kesteloot H, Liu K, Ueshima H, Zhou BF, Group IR (2003) INTERMAP: background, aims, design, methods, and descriptive statistics (nondietary). J Hum Hypertens 17:591–608

    Article  CAS  Google Scholar 

  14. Dennis B, Stamler J, Buzzard M, Conway R, Elliott P, Moag-Stahlberg A, Okayama A, Okuda N, Robertson C, Robinson F, Schakel S, Stevens M, Van Heel N, Zhao L, Zhou BF, Group IR (2003) INTERMAP: the dietary data–process and quality control. J Hum Hypertens 17:609–622

    Article  CAS  Google Scholar 

  15. Stamler J, Neaton J, Garside D, Daviglus M (2005) Current status: six established major risk factors—and low risk. In: Marmot M, Elliott P (eds) Coronary heart disease epidemiology: from aetiology to public health. Oxford University Press, London, pp 32–70

    Chapter  Google Scholar 

  16. Stamler J (1992) Established major coronary risk factors. In: Marmot M, Elliott P (eds) Coronary heart disease epidemiology: from aetiology to public health. Oxford University Press, New York, pp 35–66

    Google Scholar 

  17. World Health Organization (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157–163

    Article  Google Scholar 

  18. Ueshima H, Okayama A, Saitoh S, Nakagawa H, Rodriguez B, Sakata K, Okuda N, Choudhury SR, Curb JD, Group IR (2003) Differences in cardiovascular disease risk factors between Japanese in Japan and Japanese-Americans in Hawaii: the INTERLIPID study. J Hum Hypertens 17:631–639

    Article  CAS  Google Scholar 

  19. de Oliveira CM, Pereira AC, de Andrade M, Soler JM, Krieger JE (2008) Heritability of cardiovascular risk factors in a Brazilian population: Baependi Heart Study. BMC Med Genet 9:32

    Article  Google Scholar 

  20. Sing CF, Moll PP (1989) Genetics of variability of CHD risk. Int J Epidemiol 18:S183–S195

    CAS  Google Scholar 

  21. Berg K (1989) Role of genetic factors in atherosclerotic disease. Am J Clin Nutr 49:1025–1029

    CAS  Google Scholar 

  22. Moll PP, Harburg E, Burns TL, Schork MA, Ozgoren F (1983) Heredity, stress and blood pressure, a family set approach: the Detroit Project revisited. J Chronic Dis 36:317–328

    Article  CAS  Google Scholar 

  23. Morton NE, Gulbrandsen CL, Rao DC, Rhoads GG, Kagan A (1980) Determinants of blood pressure in Japanese-American families. Hum Genet 53:261–266

    Article  CAS  Google Scholar 

  24. Rice T, Vogler GP, Perry TS, Laskarzewski PM, Rao DC (1991) Familial aggregation of lipids and lipoproteins in families ascertained through random and nonrandom probands in the Iowa Lipid Research Clinics Family Study. Hum Hered 41:107–121

    Article  CAS  Google Scholar 

  25. Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, Hixson JE, Henkel RD, Sharp RM, Comuzzie AG, VandeBerg JL, Stern MP, MacCluer JW (1996) Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio Family Heart Study. Circulation 94:2159–2170

    Article  CAS  Google Scholar 

  26. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, Kaplan L, Bennett D, Li Y, Tanaka T, Voight BF, Bonnycastle LL, Jackson AU, Crawford G, Surti A, Guiducci C, Burtt NP, Parish S, Clarke R, Zelenika D, Kubalanza KA, Morken MA, Scott LJ, Stringham HM, Galan P, Swift AJ, Kuusisto J, Bergman RN, Sundvall J, Laakso M, Ferrucci L, Scheet P, Sanna S, Uda M, Yang Q, Lunetta KL, Dupuis J, de Bakker PI, O’Donnell CJ, Chambers JC, Kooner JS, Hercberg S, Meneton P, Lakatta EG, Scuteri A, Schlessinger D, Tuomilehto J, Collins FS, Groop L, Altshuler D, Collins R, Lathrop GM, Melander O, Salomaa V, Peltonen L, Orho-Melander M, Ordovas JM, Boehnke M, Abecasis GR, Mohlke KL, Cupples LA (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41:56–65

    Article  CAS  Google Scholar 

  27. Ma L, Yang J, Runesha HB, Tanaka T, Ferrucci L, Bandinelli S, Da Y (2010) Genome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham heart study data. BMC Med Genet 11:55

    Article  CAS  Google Scholar 

  28. Johansson A, Marroni F, Hayward C, Franklin CS, Kirichenko AV, Jonasson I, Hicks AA, Vitart V, Isaacs A, Axenovich T, Campbell S, Dunlop MG, Floyd J, Hastie N, Hofman A, Knott S, Kolcic I, Pichler I, Polasek O, Rivadeneira F, Tenesa A, Uitterlinden AG, Wild SH, Zorkoltseva IV, Meitinger T, Wilson JF, Rudan I, Campbell H, Pattaro C, Pramstaller P, Oostra BA, Wright AF, van Duijn CM, Aulchenko YS, Gyllensten U (2009) Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis. Hum Mol Genet 18:373–380

    Article  CAS  Google Scholar 

  29. Boehnke M, Moll PP, Kottke BA, Weidman WH (1987) Partitioning the variability of fasting plasma glucose levels in pedigrees. Genetic and environmental factors. Am J Epidemiol 125:679–689

    CAS  Google Scholar 

  30. Laskarzewski PM, Rao DC, Glueck CJ (1984) The Cincinnati Lipid Research Clinic Family Study: analysis of commingling and family resemblance for fasting blood glucose. Genet Epidemiol 1:341–355

    Article  CAS  Google Scholar 

  31. Moll PP, Burns TL, Lauer RM (1991) The genetic and environmental sources of body mass index variability: the Muscatine Ponderosity Family Study. Am J Hum Genet 49:1243–1255

    CAS  Google Scholar 

  32. Govindaraju DR, Cupples LA, Kannel WB, O’Donnell CJ, Atwood LD, D’Agostino RB Sr, Fox CS, Larson M, Levy D, Murabito J, Vasan RS, Splansky GL, Wolf PA, Benjamin EJ (2008) Genetics of the Framingham Heart Study population. Adv Genet 62:33–65

    Article  Google Scholar 

  33. Ajjan RA, Ariens RA (2009) Cardiovascular disease and heritability of the prothrombotic state. Blood Rev 23:67–78

    Article  CAS  Google Scholar 

  34. Hamsten A, Eriksson P (2008) Identifying the susceptibility genes for coronary artery disease: from hyperbole through doubt to cautious optimism. J Intern Med 263:538–552

    Article  CAS  Google Scholar 

  35. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC (2000) Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med 343:16–22

    Article  CAS  Google Scholar 

  36. Chiuve SE, McCullough ML, Sacks FM, Rimm EB (2006) Healthy lifestyle factors in the primary prevention of coronary heart disease among men: benefits among users and nonusers of lipid-lowering and antihypertensive medications. Circulation 114:160–167

    Article  Google Scholar 

  37. Akesson A, Weismayer C, Newby PK, Wolk A (2007) Combined effect of low-risk dietary and lifestyle behaviors in primary prevention of myocardial infarction in women. Arch Intern Med 167:2122–2127

    Article  Google Scholar 

  38. Forman JP, Stampfer MJ, Curhan GC (2009) Diet and lifestyle risk factors associated with incident hypertension in women. JAMA 302:401–411

    Article  CAS  Google Scholar 

  39. Sacks FM, Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N (1999) A dietary approach to prevent hypertension: a review of the Dietary Approaches to Stop Hypertension (DASH) Study. Clin Cardiol 22:III6–III10

    Article  CAS  Google Scholar 

  40. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH, Group DA-SCR (2001) Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 344:3–10

    Article  CAS  Google Scholar 

  41. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N (1997) A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 336:1117–1124

    Article  CAS  Google Scholar 

  42. Carey VJ, Bishop L, Charleston J, Conlin P, Erlinger T, Laranjo N, McCarron P, Miller E, Rosner B, Swain J, Sacks FM, Appel LJ (2005) Rationale and design of the optimal macro-nutrient intake heart trial to prevent heart disease (OMNI-heart). Clin Trials 2:529–537

    Article  Google Scholar 

  43. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3rd, Conlin PR, Erlinger TP, Rosner BA, Laranjo NM, Charleston J, McCarron P, Bishop LM, OmniHeart Collaborative Research G (2005) Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 294:2455–2464

    Article  CAS  Google Scholar 

  44. American Heart Association Nutrition Committee, Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, Franklin B, Kris-Etherton P, Harris WS, Howard B, Karanja N, Lefevre M, Rudel L, Sacks F, Van Horn L, Winston M, Wylie-Rosett J (2006) Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation 114:82–96

    Article  Google Scholar 

  45. Dumler F (2009) Dietary sodium intake and arterial blood pressure. J Ren Nutr 19:57–60

    Article  CAS  Google Scholar 

  46. Miller ER, Erlinger TP, Appel LJ (2006) The effects of macronutrients on blood pressure and lipids: an overview of the DASH and OmniHeart trials. Curr Atheroscler Rep 8:460–465

    Article  CAS  Google Scholar 

  47. Vardavas CI, Linardakis MK, Hatzis CM, Saris WH, Kafatos AG (2010) Cardiovascular disease risk factors and dietary habits of farmers from Crete 45 years after the first description of the Mediterranean diet. Eur J Cardiovas Preven rehabil: official Journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology 17:440–446

    Google Scholar 

  48. Shimazu T, Kuriyama S, Hozawa A, Ohmori K, Sato Y, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2007) Dietary patterns and cardiovascular disease mortality in Japan: a prospective cohort study. Int J Epidemiol 36:600–609

    Article  Google Scholar 

  49. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, Trichopoulos D (1995) Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 61:1402S–1406S

    CAS  Google Scholar 

  50. da Silva R, Bach-Faig A, Raido Quintana B, Buckland G, Vaz de Almeida MD, Serra-Majem L (2009) Worldwide variation of adherence to the Mediterranean diet, in 1961–1965 and 2000–2003. Public Health Nutr 12:1676–1684

    Article  Google Scholar 

Download references

Acknowledgments

We thank all INTERMAP staff and participants at local, national, and international centers for their invaluable efforts; a partial listing of colleagues is given in Reference 13 here. This study was supported by grants 2-ROI-HL50490 and T32 HL 069771-07 from the National Heart, Lung, and Blood Institute, National Institutes of Health, and by the National Institutes of Health Office on Dietary Supplements (Bethesda, MD), and by national agencies in China, Japan (the Ministry of Education, Science, Sports, and Culture, grant-in-aid for scientific research [A] No. 090357003), and the United Kingdom.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Shay.

Additional information

This study is conducted for the INTERMAP Research Group.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shay, C.M., Stamler, J., Dyer, A.R. et al. Nutrient and food intakes of middle-aged adults at low risk of cardiovascular disease: the international study of macro-/micronutrients and blood pressure (INTERMAP). Eur J Nutr 51, 917–926 (2012). https://doi.org/10.1007/s00394-011-0268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0268-2

Keywords

Navigation