Skip to main content
Log in

Eosinophile Granulozyten – Physiologie und Pathophysiologie

Eosinophilic granulocytes—Physiology and pathophysiology

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Die eosinophilen Granulozyten sind als Untergruppe der Leukozyten ein Teil des angeborenen Immunzellpools. Zusätzlich nehmen sie homöostatische Aufgaben im Gewebe war. Klassischerweise werden Allergien und Parasiteninfektionen mit einer erhöhten Eosinophilenzahl assoziiert, doch findet man eine Eosinophilie auch bei Vaskulitiden und Tumorerkrankungen. Die wichtigsten Steuerungselemente der Eosinophilen sind das Zytokin Interleukin 5 und die Eotaxine. Selbst produzieren Eosinophile die unterschiedlichsten Kommunikationsfaktoren und toxischen Proteine, die in den zytoplasmatischen Granula gespeichert sind und bei Bedarf abhängig vom jeweiligen Stimulus gezielt und schnell ausgeschüttet werden können. Zur Pathogenbekämpfung können Eosinophile auch extrazelluläre mitochondriale DNA-Netze herauskatapultieren. In dieser Übersicht werden Grundaufbau, Steuerung und Funktion der Eosinophilen im Gesunden und bei Krankheiten besprochen.

Abstract

Eosinophilic granulocytes are a subpopulation of leucocytes and part of the innate immune cell pool. Additionally, they have homeostatic functions in different tissues. Classically, an increased number of eosinophils is associated with allergies and parasitic infections; however, eosinophilia can also be found in vasculitides and malignant tumors. The most important controlling factors of eosinophils are the cytokine interleukin 5 and eotaxins. Eosinophils are able to produce a broad range of signalling factors and toxic proteins, which are stored in cytoplasmic granules and can be quickly and specifically released when needed depending on the stimulus. To combat pathogens, eosinophils can catapult extracellular traps consisting of mitochondrial DNA and toxic proteins into the intercellular space. This review focuses on the basic structure, control and function of eosinophils in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ackerman SJ, Liu L, Kwatia MA et al (2002) Charcot-Leyden crystal protein (galectin-10) is not a dual function galectin with lysophospholipase activity but binds a lysophospholipase inhibitor in a novel structural fashion. J Biol Chem 277:14859–14868

    Article  CAS  PubMed  Google Scholar 

  2. Arnold IC, Artola-Boran M, Tallon De Lara P et al (2018) Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med 215:2055–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beck LA, Thaci D, Hamilton JD et al (2014) Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med 371:130–139

    Article  PubMed  Google Scholar 

  4. Blanchard C, Simon D, Schoepfer A et al (2017) Eosinophilic esophagitis: unclear roles of IgE and eosinophils. J Intern Med 281:448–457

    Article  CAS  PubMed  Google Scholar 

  5. Carretero R, Sektioglu IM, Garbi N et al (2015) Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat Immunol 16:609–617

    Article  CAS  PubMed  Google Scholar 

  6. Chu VT, Beller A, Rausch S et al (2014) Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 40:582–593

    Article  CAS  PubMed  Google Scholar 

  7. Chu VT, Frohlich A, Steinhauser G et al (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12:151–159

    Article  CAS  PubMed  Google Scholar 

  8. Chua JC, Douglass JA, Gillman A et al (2012) Galectin-10, a potential biomarker of eosinophilic airway inflammation. PLoS ONE 7:e42549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cowardin CA, Buonomo EL, Saleh MM et al (2016) The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat Microbiol 1:16108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cross NC, Reiter A (2008) Fibroblast growth factor receptor and platelet-derived growth factor receptor abnormalities in eosinophilic myeloproliferative disorders. Acta Haematol 119:199–206

    Article  CAS  PubMed  Google Scholar 

  11. Elishmereni M, Alenius HT, Bradding P et al (2011) Physical interactions between mast cells and eosinophils: a novel mechanism enhancing eosinophil survival in vitro. Allergy 66:376–385

    Article  CAS  PubMed  Google Scholar 

  12. Fabre V, Beiting DP, Bliss SK et al (2009) Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol 182(0):1577–1583

    Article  CAS  PubMed  Google Scholar 

  13. Farhan RK, Vickers MA, Ghaemmaghami AM et al (2016) Effective antigen presentation to helper T cells by human eosinophils. Immunology 149:413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Forbes E, Hulett M, Ahrens R et al (2006) ICAM-1-dependent pathways regulate colonic eosinophilic inflammation. J Leukoc Biol 80:330–341

    Article  CAS  PubMed  Google Scholar 

  15. Furuta GT, Kagalwalla AF, Lee JJ et al (2013) The oesophageal string test: a novel, minimally invasive method measures mucosal inflammation in eosinophilic oesophagitis. Gut 62:1395–1405

    Article  CAS  PubMed  Google Scholar 

  16. Gleich GJ, Klion AD, Lee JJ et al (2013) The consequences of not having eosinophils. Arerugi 68:829–835

    CAS  Google Scholar 

  17. Goh YP, Henderson NC, Heredia JE et al (2013) Eosinophils secrete IL-4 to facilitate liver regeneration. Proc Natl Acad Sci USA 110:9914–9919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gouon-Evans V, Pollard JW (2001) Eotaxin is required for eosinophil homing into the stroma of the pubertal and cycling uterus. Endocrinology 142:4515–4521

    Article  CAS  PubMed  Google Scholar 

  19. Gouon-Evans V, Rothenberg ME, Pollard JW (2000) Postnatal mammary gland development requires macrophages and eosinophils. Development 127:2269–2282

    CAS  PubMed  Google Scholar 

  20. Haldar P, Brightling CE, Hargadon B et al (2009) Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 360:973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heredia JE, Mukundan L, Chen FM et al (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153:376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hogan SP, Rosenberg HF, Moqbel R et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750

    Article  CAS  PubMed  Google Scholar 

  23. Jacobsen EA, Zellner KR, Colbert D et al (2011) Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J Immunol 187:6059–6068

    Article  CAS  PubMed  Google Scholar 

  24. Jung Y, Wen T, Mingler MK et al (2015) IL-1beta in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol 8:930–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim HJ, Alonzo ES, Dorothee G et al (2010) Selective depletion of eosinophils or neutrophils in mice impacts the efficiency of apoptotic cell clearance in the thymus. PLoS ONE 5:e11439

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kopf M, Brombacher F, Hodgkin PD et al (1996) IL-5-deficient mice have a developmental defect in CD5+ B‑1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24

    Article  CAS  PubMed  Google Scholar 

  27. Lampinen M, Ronnblom A, Amin K et al (2005) Eosinophil granulocytes are activated during the remission phase of ulcerative colitis. Gut 54:1714–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Melo RC, Liu L, Xenakis JJ et al (2013) Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy 68:274–284

    Article  CAS  PubMed  Google Scholar 

  29. Melo RC, Weller PF (2010) Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol Histopathol 25:1341–1354

    PubMed  PubMed Central  Google Scholar 

  30. Nussbaum JC, Van Dyken SJ, Von Moltke J et al (2013) Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pepper RJ, Fabre MA, Pavesio C et al (2008) Rituximab is effective in the treatment of refractory Churg-Strauss syndrome and is associated with diminished T‑cell interleukin-5 production. Rheumatology (Oxf) 47:1104–1105

    Article  CAS  Google Scholar 

  32. Phipps S, Lam CE, Mahalingam S et al (2007) Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 110:1578–1586

    Article  CAS  PubMed  Google Scholar 

  33. Plaut M, Pierce JH, Watson CJ et al (1989) Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature 339:64–67

    Article  CAS  PubMed  Google Scholar 

  34. Qiu Y, Nguyen KD, Odegaard JI et al (2014) Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157:1292–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Radonjic-Hoesli S, Valent P, Klion AD et al (2015) Novel targeted therapies for eosinophil-associated diseases and allergy. Annu Rev Pharmacol Toxicol 55:633–656

    Article  CAS  PubMed  Google Scholar 

  36. Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22

    Article  CAS  PubMed  Google Scholar 

  37. Schrezenmeier H, Thome SD, Tewald F et al (1993) Interleukin-5 is the predominant eosinophilopoietin produced by cloned T lymphocytes in hypereosinophilic syndrome. Exp Hematol 21:358–365

    CAS  PubMed  Google Scholar 

  38. Shi HZ, Xiao CQ, Li CQ et al (2004) Endobronchial eosinophils preferentially stimulate T helper cell type 2 responses. Allergy 59:428–435

    Article  CAS  PubMed  Google Scholar 

  39. Simon D, Simon HU, Yousefi S (2013) Extracellular DNA traps in allergic, infectious, and autoimmune diseases. Allergy 68:409–416

    Article  CAS  PubMed  Google Scholar 

  40. Simon HU, Plotz SG, Dummer R et al (1999) Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N Engl J Med 341:1112–1120

    Article  CAS  PubMed  Google Scholar 

  41. Simon HU, Yousefi S, Schranz C et al (1997) Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J Immunol 158:3902–3908

    CAS  PubMed  Google Scholar 

  42. Soragni A, Yousefi S, Stoeckle C et al (2015) Toxicity of eosinophil MBP is repressed by intracellular crystallization and promoted by extracellular aggregation. Mol Cell 57:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spencer LA, Melo RC, Perez SA et al (2006) Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc Natl Acad Sci USA 103:3333–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stahle-Backdahl M, Maim J, Veress B et al (2000) Increased presence of eosinophilic granulocytes expressing transforming growth factor-beta1 in collagenous colitis. Scand J Gastroenterol 35:742–746

    Article  CAS  PubMed  Google Scholar 

  45. Steinbach KH, Schick P, Trepel F et al (1979) Estimation of kinetic parameters of neutrophilic, eosinophilic, and basophilic granulocytes in human blood. Blut 39:27–38

    Article  CAS  PubMed  Google Scholar 

  46. Stoeckle C, Geering B, Yousefi S et al (2016) RhoH is a negative regulator of eosinophilopoiesis. Cell Death Differ 23:1961–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Straumann A, Conus S, Grzonka P et al (2010) Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut 59:21–30

    Article  CAS  PubMed  Google Scholar 

  48. Valent P, Klion AD, Horny HP et al (2012) Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol 130:607–612.e9

    Article  PubMed  PubMed Central  Google Scholar 

  49. Von Gunten S, Vogel M, Schaub A et al (2007) Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J Allergy Clin Immunol 119:1005–1011

    Article  Google Scholar 

  50. Wang HB, Ghiran I, Matthaei K et al (2007) Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J Immunol 179:7585–7592

    Article  CAS  PubMed  Google Scholar 

  51. Wu D, Molofsky AB, Liang HE et al (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yousefi S, Gold JA, Andina N et al (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14:949–953

    Article  CAS  PubMed  Google Scholar 

  53. Yousefi S, Sharma SK, Stojkov D et al (2018) Oxidative damage of SP-D abolishes control of eosinophil extracellular DNA trap formation. J Leukoc Biol 104:205–214

    Article  CAS  PubMed  Google Scholar 

  54. Zhang X, Cheng E, Huo X et al (2012) Omeprazole blocks STAT6 binding to the eotaxin-3 promoter in eosinophilic esophagitis cells. PLoS ONE 7:e50037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-U. Simon.

Ethics declarations

Interessenkonflikt

C. Sokollik und H.-U. Simon geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

B. Hellmich, Kirchheim-Teck

F. Moosig, Neumünster

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokollik, C., Simon, HU. Eosinophile Granulozyten – Physiologie und Pathophysiologie. Z Rheumatol 78, 306–312 (2019). https://doi.org/10.1007/s00393-018-0574-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-018-0574-7

Schlüsselwörter

Keywords

Navigation