Skip to main content

Advertisement

Log in

Circulating cells as predictors of secondary manifestations of cardiovascular disease: design of the CIRCULATING CELLS study

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Biomarkers for primary or secondary risk prediction of cardiovascular disease (CVD) are urgently needed to improve individual treatment and clinical trial design. The vast majority of biomarker discovery studies has concentrated on plasma/serum as an easily accessible source. Although numerous markers have been identified, their added predictive value on top of traditional risk factors has been limited, as the biological specimen does not specifically reflect expression profiles related with CVD progression and because the signal is often diluted by marker release from other organs. In contrast to serum markers, circulating cells serve as indicators of the actual disease state due to their active role in the pathogenesis of CVD and are responsible for the majority of secreted biomarkers. Therefore, the CIRCULATING CELLS study was initiated, focusing on the cellular effectors of atherosclerosis in the circulation. In total, 714 patients with coronary artery disease (CAD) symptoms were included. Blood cell fractions (monocytes, T-lymphocytes, platelets, granulocytes, PBMC) of all individual patients were isolated and stored for analysis. Concomitantly, extensive flow cytometric characterization of these populations was performed. From each patient, a detailed clinical profile together with extensive questionnaires about medical history and life style was obtained. Various high-throughput -omics approaches (protein, mRNA, miRNA) are currently being undertaken. Data will be integrated with advanced bioinformatics for discovery and validation of secondary risk markers for adverse events. Overall, the CIRCULATING CELLS study grants the interesting possibility that it will both identify novel biomarkers and provide useful insights into the pathophysiology of CAD in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, Walker M, Thompson A, Sarwar N, Caslake M, Butterworth AS, Amouyel P, Assmann G, Bakker SJ, Barr EL, Barrett-Connor E, Benjamin EJ, Bjorkelund C, Brenner H, Brunner E, Clarke R, Cooper JA, Cremer P, Cushman M, Dagenais GR, D’Agostino RB Sr, Dankner R, Davey-Smith G, Deeg D, Dekker JM, Engstrom G, Folsom AR, Fowkes FG, Gallacher J, Gaziano JM, Giampaoli S, Gillum RF, Hofman A, Howard BV, Ingelsson E, Iso H, Jorgensen T, Kiechl S, Kitamura A, Kiyohara Y, Koenig W, Kromhout D, Kuller LH, Lawlor DA, Meade TW, Nissinen A, Nordestgaard BG, Onat A, Panagiotakos DB, Psaty BM, Rodriguez B, Rosengren A, Salomaa V, Kauhanen J, Salonen JT, Shaffer JA, Shea S, Ford I, Stehouwer CD, Strandberg TE, Tipping RW, Tosetto A, Wassertheil-Smoller S, Wennberg P, Westendorp RG, Whincup PH, Wilhelmsen L, Woodward M, Lowe GD, Wareham NJ, Khaw KT, Sattar N, Packard CJ, Gudnason V, Ridker PM, Pepys MB, Thompson SG, Danesh J (2012) C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 367(14):1310–1320

    Article  PubMed  Google Scholar 

  2. Sever PS, Chang CL, Prescott MF, Gupta A, Poulter NR, Whitehouse A, Scanlon M (2012) Is plasma renin activity a biomarker for the prediction of renal and cardiovascular outcomes in treated hypertensive patients? Observations from the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Eur Heart J 33(23):2970–2979

    Article  PubMed  CAS  Google Scholar 

  3. Dadu RT, Nambi V, Ballantyne CM (2012) Developing and assessing cardiovascular biomarkers. Transl Res 159(4):265–276

    Article  PubMed  CAS  Google Scholar 

  4. Fava C, Montagnana M, Guidi GC, Melander O (2012) From circulating biomarkers to genomics and imaging in the prediction of cardiovascular events in the general population. Ann Med 44(5):433–447

    Article  PubMed  Google Scholar 

  5. Lok DJ, Lok SI, de la Bruggink-André Porte PW, Badings E, Lipsic E, van Wijngaarden J, de Boer RA, van Veldhuisen DJ, van der Meer P (2013) Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res cardiol 102:103–110. doi:10.1007/s00392-012-0500-y

    Article  PubMed  CAS  Google Scholar 

  6. Balın M, Celik A, Kobat MA (2012) Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are associated with proximal/middle segment of the LAD lesions in patients with stable coronary artery disease. Clin Res cardiol 101:247–253. doi:10.1007/s00392-011-0386-0

    Article  PubMed  Google Scholar 

  7. Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, Jacques PF, Rifai N, Selhub J, Robins SJ, Benjamin EJ, D’Agostino RB, Vasan RS (2006) Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med 355(25):2631–2639

    Article  PubMed  CAS  Google Scholar 

  8. Hellings WE, Moll FL, De Vries JP, Ackerstaff RG, Seldenrijk KA, Met R, Velema E, Derksen WJ, De Kleijn DP, Pasterkamp G (2008) Atherosclerotic plaque composition and occurrence of restenosis after carotid endarterectomy. JAMA 299(5):547–554

    Article  PubMed  CAS  Google Scholar 

  9. Verhoeven BA, Velema E, Schoneveld AH, de Vries JP, de Bruin P, Seldenrijk CA, de Kleijn DP, Busser E, van der Graaf Y, Moll F, Pasterkamp G (2004) Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design. Eur J Epidemiol 19(12):1127–1133

    Article  PubMed  CAS  Google Scholar 

  10. Kang J-G, Patino WD, Matoba S, Hwang PM (2006) Genomic analysis of circulating cells: a window into atherosclerosis. Trends Cardiovasc Med 16:163–168

    Article  PubMed  CAS  Google Scholar 

  11. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519

    Article  PubMed  CAS  Google Scholar 

  12. Libby P, Ridker PM, Hansson GK (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54(23):2129–2138

    Article  PubMed  CAS  Google Scholar 

  13. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108(14):1664–1672

    Article  PubMed  Google Scholar 

  14. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 108(15):1772–1778

    Article  PubMed  Google Scholar 

  15. Balconi G, Lehmann R, Fiordaliso F, Assmus B, Dimmeler S, Sarto P, Carbonieri E, Gualco A, Campana C, Angelici L (2009) Levels of circulating pro-angiogenic cells predict cardiovascular outcomes in patients with chronic heart failure. J Cardiac Fail 15:747–755

    Article  Google Scholar 

  16. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111(22):2981–2987

    Article  PubMed  Google Scholar 

  17. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353(10):999–1007

    Article  PubMed  CAS  Google Scholar 

  18. Ka Volaklis, Tokmakidis SP, Halle M (2013) Acute and chronic effects of exercise on circulating endothelial progenitor cells in healthy and diseased patients. Clin Res Cardiol 102:249–257. doi:10.1007/s00392-012-0517-2

    Article  Google Scholar 

  19. Heine GH, Ulrich C, Seibert E, Seiler S, Marell J, Reichart B, Krause M, Schlitt A, Kohler H, Girndt M (2008) CD14(++)CD16 + monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int 73(5):622–629

    Article  PubMed  CAS  Google Scholar 

  20. Ulrich C, Heine GH, Seibert E, Fliser D, Girndt M (2010) Circulating monocyte subpopulations with high expression of angiotensin-converting enzyme predict mortality in patients with end-stage renal disease. Nephrol Dial Transplant 25:2265–2272

    Article  PubMed  CAS  Google Scholar 

  21. Alber HF, Duftner C, Wanitschek M, Dörler J, Schirmer M, Suessenbacher A, Frick M, Dichtl W, Pachinger O, Weidinger F (2009) Neopterin, CD4 + CD28 − lymphocytes and the extent and severity of coronary artery disease. Int J Cardiol 135:27–35

    Article  PubMed  Google Scholar 

  22. Dumitriu IE, Araguas ET, Baboonian C, Kaski JC (2009) CD4 + CD28 null T cells in coronary artery disease: when helpers become killers. Cardiovasc Res 81(1):11–19

    Article  PubMed  CAS  Google Scholar 

  23. Giubilato S, Liuzzo G, Brugaletta S, Pitocco D, Graziani F, Smaldone C, Montone RA, Pazzano V, Pedicino D, Biasucci LM, Ghirlanda G, Crea F (2011) Expansion of CD4 + CD28null T-lymphocytes in diabetic patients: exploring new pathogenetic mechanisms of increased cardiovascular risk in diabetes mellitus. Eur Heart J 32(10):1214–1226

    Article  PubMed  CAS  Google Scholar 

  24. Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, Stahle E, Feldman TE, van den Brand M, Bass EJ, Van Dyck N, Leadley K, Dawkins KD, Mohr FW (2009) Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 360(10):961–972

    Article  PubMed  CAS  Google Scholar 

  25. Sinning C, Lillpopp L, Appelbaum S, Ojeda F, Zeller T, Schnabel R, Lubos E, Jagodzinski A, Keller T, Munzel T, Bickel C, Blankenberg S (2013) Angiographic score assessment improves cardiovascular risk prediction: the clinical value of SYNTAX and Gensini application. Clin Res Cardiol. doi:10.1007/s00392-013-0555-4

    Google Scholar 

  26. Sianos G, Morel MA, Kappetein AP, Morice MC, Colombo A, Dawkins K, van den Brand M, Van Dyck N, Russell ME, Mohr FW, Serruys PW (2005) The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 1(2):219–227

    PubMed  Google Scholar 

  27. Bleijerveld OB, Wijten P, Cappadona S, McClellan EA, Polat AN, Raijmakers R, Sels JW, Colle L, Grasso S, van den Toorn HW, van Breukelen B, Stubbs A, Pasterkamp G, Heck AJ, Hoefer IE, Scholten A (2012) Deep proteome profiling of circulating granulocytes reveals bactericidal/permeability-increasing protein as a biomarker for severe atherosclerotic coronary stenosis. J Proteome Res. doi:10.1021/pr3004375

    PubMed  Google Scholar 

  28. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Spertus JA, Berman DS, Mancini GB, Weintraub WS (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356(15):1503–1516

    Article  PubMed  CAS  Google Scholar 

  29. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  PubMed  CAS  Google Scholar 

  30. Fox KA, Goodman SG, Klein W, Brieger D, Steg PG, Dabbous O, Avezum A (2002) Management of acute coronary syndromes. variations in practice and outcome; findings from the global registry of acute coronary events (GRACE). Eur Heart J 23(15):1177–1189

    Article  PubMed  CAS  Google Scholar 

  31. Hasdai D, Behar S, Wallentin L, Danchin N, Gitt AK, Boersma E, Fioretti PM, Simoons ML, Battler A (2002) A prospective survey of the characteristics, treatments and outcomes of patients with acute coronary syndromes in Europe and the Mediterranean basin; the Euro Heart Survey of Acute Coronary Syndromes (Euro Heart Survey ACS). Eur Heart J 23(15):1190–1201

    Article  PubMed  CAS  Google Scholar 

  32. Sanchez-Margalet V, Cubero JM, Martin-Romero C, Cubero J, Cruz-Fernandez JM, Goberna R (2004) Expression of activation molecules in neutrophils, monocytes and lymphocytes from patients with unstable angina treated with stent implantation. Clin Chem Lab Med 42(3):273–278

    Article  PubMed  CAS  Google Scholar 

  33. Sarma J, Laan CA, Alam S, Jha A, Fox KA, Dransfield I (2002) Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation 105(18):2166–2171

    Article  PubMed  Google Scholar 

  34. Gurbel PA, Bliden KP, Hayes KM, Tantry U (2004) Platelet activation in myocardial ischemic syndromes. Expert Rev Cardiovasc Ther 2(4):535–545

    Article  PubMed  CAS  Google Scholar 

  35. Schlitt A, Heine GH, Blankenberg S, Espinola-Klein C, Dopheide JF, Bickel C, Lackner KJ, Iz M, Meyer J, Darius H, Rupprecht HJ (2004) CD14 + CD16 + monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost 92(2):419–424

    PubMed  CAS  Google Scholar 

  36. Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115(12):3378–3384

    Article  PubMed  CAS  Google Scholar 

  37. Methe H, Kim JO, Kofler S, Weis M, Nabauer M, Koglin J (2005) Expansion of circulating Toll-like receptor 4-positive monocytes in patients with acute coronary syndrome. Circulation 111(20):2654–2661

    Article  PubMed  CAS  Google Scholar 

  38. von Hundelshausen P, Weber C (2007) Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 100(1):27–40

    Article  Google Scholar 

  39. Zernecke A, Bot I, Djalali-Talab Y, Shagdarsuren E, Bidzhekov K, Meiler S, Krohn R, Schober A, Sperandio M, Soehnlein O, Bornemann J, Tacke F, Biessen EA, Weber C (2008) Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 102(2):209–217

    Article  PubMed  CAS  Google Scholar 

  40. Brambilla M, Camera M, Colnago D, Marenzi G, De Metrio M, Giesen PL, Balduini A, Veglia F, Gertow K, Biglioli P, Tremoli E (2008) Tissue factor in patients with acute coronary syndromes: expression in platelets, leukocytes, and platelet-leukocyte aggregates. Arterioscler Thromb Vasc Biol 28(5):947–953

    Article  PubMed  CAS  Google Scholar 

  41. Shantsila E, Lip GY (2009) Monocytes in acute coronary syndromes. Arterioscler Thromb Vasc Biol 29(10):1433–1438

    Article  PubMed  CAS  Google Scholar 

  42. Imanishi T, Ikejima H, Tsujioka H, Kuroi A, Ishibashi K, Komukai K, Tanimoto T, Ino Y, Takeshita T, Akasaka T (2010) Association of monocyte subset counts with coronary fibrous cap thickness in patients with unstable angina pectoris. Atherosclerosis 212(2):628–635

    Article  PubMed  CAS  Google Scholar 

  43. Snoep JD, Roest M, Barendrecht AD, De Groot PG, Rosendaal FR, Van Der Bom JG (2010) High platelet reactivity is associated with myocardial infarction in premenopausal women: a population-based case-control study. J Thromb Haemost 8(5):906–913

    PubMed  CAS  Google Scholar 

  44. Ley K, Miller YI, Hedrick CC (2011) Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol 31(7):1506–1516

    Article  PubMed  CAS  Google Scholar 

  45. Linden MD, Jackson DE (2010) Platelets: pleiotropic roles in atherogenesis and atherothrombosis. Int J Biochem Cell Biol 42(11):1762–1766

    Article  PubMed  CAS  Google Scholar 

  46. Schirmer SH, Fledderus JO, van der Laan AM, van der Pouw-Kraan TCTM, Moerland PD, Volger OL, Baggen JM, Böhm M, Piek JJ, Horrevoets AJG, van Royen N (2009) Suppression of inflammatory signaling in monocytes from patients with coronary artery disease. J Mole Cell Cardiol 46(2):177–185. doi:10.1016/j.yjmcc.2008.10.029

    Article  CAS  Google Scholar 

  47. Ardigo D, CaJM Gaillard, Braam B (2007) Application of leukocyte transcriptomes to assess systemic consequences of risk factors for cardiovascular disease. Clinical chem and lab med 45:1109–1120

    CAS  Google Scholar 

  48. Horwitz PA, Tsai EJ, Putt ME, Gilmore JM, Lepore JJ, Parmacek MS, Kao AC, Desai SS, Goldberg LR, Brozena SC, Jessup ML, Epstein JA, Cappola TP (2004) Detection of cardiac allograft rejection and response to immunosuppressive therapy with peripheral blood gene expression. Circulation 110(25):3815–3821

    Article  PubMed  CAS  Google Scholar 

  49. Ma J, Liew CC (2003) Gene profiling identifies secreted protein transcripts from peripheral blood cells in coronary artery disease. J Mol Cell Cardiol 35(8):993–998

    Article  PubMed  CAS  Google Scholar 

  50. Patino WD, Mian OY, Kang JG, Matoba S, Bartlett LD, Holbrook B, Trout HH 3rd, Kozloff L, Hwang PM (2005) Circulating transcriptome reveals markers of atherosclerosis. Proc Natl Acad Sci USA 102(9):3423–3428

    Article  PubMed  CAS  Google Scholar 

  51. Moore DF, Li H, Jeffries N, Wright V, Cooper RA Jr, Elkahloun A, Gelderman MP, Zudaire E, Blevins G, Yu H, Goldin E, Baird AE (2005) Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: a pilot investigation. Circulation 111(2):212–221

    Article  PubMed  CAS  Google Scholar 

  52. Empana JP, Canoui-Poitrine F, Luc G, Juhan-Vague I, Morange P, Arveiler D, Ferrieres J, Amouyel P, Bingham A, Montaye M, Ruidavets JB, Haas B, Evans A, Ducimetiere P (2008) Contribution of novel biomarkers to incident stable angina and acute coronary syndrome: the PRIME Study. Eur Heart J 29(16):1966–1974. doi:10.1093/eurheartj/ehn331 ehn331 [pii]

    Article  PubMed  CAS  Google Scholar 

  53. Lindmark E, Diderholm E, Wallentin L, Siegbahn A (2001) Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 286(17):2107–2113

    Article  PubMed  CAS  Google Scholar 

  54. Tziakas DN, Chalikias GK, Tentes IK, Stakos D, Chatzikyriakou SV, Mitrousi K, Kortsaris AX, Kaski JC, Boudoulas H (2008) Interleukin-8 is increased in the membrane of circulating erythrocytes in patients with acute coronary syndrome. Eur Heart J 29(22):2713–2722

    Article  PubMed  CAS  Google Scholar 

  55. Biasucci LM, Vitelli A, Liuzzo G, Altamura S, Caligiuri G, Monaco C, Rebuzzi AG, Ciliberto G, Maseri A (1996) Elevated levels of interleukin-6 in unstable angina. Circulation 94(5):874–877

    Article  PubMed  CAS  Google Scholar 

  56. Mizia-Stec K, Gasior Z, Zahorska-Markiewicz B, Janowska J, Szulc A, Jastrzebska-Maj E, Kobielusz-Gembala I (2003) Serum tumour necrosis factor-alpha, interleukin-2 and interleukin-10 activation in stable angina and acute coronary syndromes. Coron Artery Dis 14(6):431–438

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was performed within the framework of CTMM, the Center for Translational Molecular Medicine (www.ctmm.nl), project CIRCULATING CELLS (grant 01C-102), and supported by the Dutch Heart Foundation

Conflict of interest

None declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imo E. Hoefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoefer, I.E., Sels, JW., Jukema, J.W. et al. Circulating cells as predictors of secondary manifestations of cardiovascular disease: design of the CIRCULATING CELLS study. Clin Res Cardiol 102, 847–856 (2013). https://doi.org/10.1007/s00392-013-0607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-013-0607-9

Keywords

Navigation