Skip to main content

Advertisement

Log in

Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau

  • Published:
Climate Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 27 September 2017

This article has been updated

Abstract

Glacier mass balance shows a spatially heterogeneous pattern in response to global warming on the Tibetan Plateau (TP), and the climate mechanisms controlling this pattern require further study. In this study, three glaciers where systematic glaciological and meteorological observations have been carried out were selected, specifically Parlung No. 4 (PL04) and Zhadang (ZD) glaciers on the southern TP and Muztag Ata No. 15 (MZ15) glacier in the eastern Pamir. The characteristics of the mass and energy balances of these three glaciers during the periods between October 1th, 2008 and September 23rd, 2013 were analyzed and compared using the energy and mass balance model. Results show that differences in surface melt, which mainly result from differences in the amounts of incoming longwave radiation (L in ) and outgoing shortwave radiation (S out ), represent the largest source of the observed differences in mass balance changes between PL04 and ZD glaciers and MZ15 glacier, where air temperature, humidity, precipitation and cloudiness are dramatically different. In addition, sensitivity experiments show that mass balance sensitivity to air temperature change is remarkably higher than that associated with precipitation change on PL04 and ZD glaciers, in contrast results from MZ15 glacier. And significantly higher sensitivities to air temperature change are noted for PL04 and ZD glaciers than for MZ15 glacier. These significant differences in the sensitivities to air temperature change are mainly caused by differences in the ratio of snowfall to precipitation during the ablation season, melt energy (L in +S out ) during the ablation season and the seasonality of precipitation among the different regions occupied by glaciers. In turn, these conditions are related to local climatic conditions, especially air temperature. These factors can be used to explain the different patterns of change in Tibetan glacier mass balance under global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 27 September 2017

    In the original publication of the article, Fig. 1 caption has been published incorrectly. In the original publication of the article, “OPS” in the note of Table 5 is changed to “QPS”. In the original publication of the article, “Fig. 1” in Line 15 of the second paragraph on Page 4 is changed to “Fig. S1”. In the original publication of the article, “Table S3” in Line 42 of the third paragraph on Page 6 is changed to “Table 3”. In the original publication of the article, “Table 2” in Line 10 of the second paragraph on Page 14 is changed to “Table 4”.

References

  • Anderson B, Mackintosh A, Stumm D, George L, Kerr T, Winter-Billington A, Fitzsimons S (2010) Climate sensitivity of a high-precipitation glacier in New Zealand. J Glaciol 56(195):114–128. doi:10.3189/002214310791190929

    Article  Google Scholar 

  • Arnold N, Willis I, Sharp M, Richards K, Lawson W (1996) A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d’Arolla, Valais, Switzerland. J Glaciol 42(140):77–89

    Article  Google Scholar 

  • Ayala A, Pellicciotti F, Shea JM (2015) Modeling 2 m air temperatures over mountain glaciers: exploring the influence of katabatic cooling and external warming. J Geophys Res 120(8):3139–3157. doi:10.1002/2015JD023137

    Google Scholar 

  • Barral H, Genthon C, Trouvilliez A, Brun C, Amory C (2014) Blowing snow in coastal Adélie Land, Antarctica: three atmospheric-moisture issues. Cryosphere 8:1905–1919 doi:10.5194/tc-8-1905-2014

    Article  Google Scholar 

  • Bintanja R, Reijmer CH (2001) A simple parameterization for snowdrift sublimation over Antarctic snow surfaces. J Geophys Res 106(D23):31739–31748. doi:10.1029/2000JD000107

    Article  Google Scholar 

  • Bolch T, Yao T, Kang S, Buchroithner MF (2010) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 4:419–433 doi:10.5194/tc-4-419-2010

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley J, Frey H, Kargel J, Fujita K, Scheel M (2012) The State and Fate of Himalayan Glaciers. Science 336(6079):310–314. doi:10.1126/science.1215828

    Article  Google Scholar 

  • Brock BW, Arnold NS (2000) A spreadsheet-based (Microsoft Excel) point surface energy balance model for glacier and snow melt studies. Earth Surf Proc Land 25(6):649–658. doi:10.1002/1096-9837(200006)25:6<649::aid-esp97>3.0.co;2-u

    Article  Google Scholar 

  • Cao B (2013) Glacier variation in the Lenglongling range of eastern Qilian mountains. PhD thesis, University of Lanzhou (in Chinese with English abstract)

  • Crawford TM, Duchon CD (1999) An improved parameterization for estimating effective atmospheric emissivity for use in Calculating Daytime Downwelling Longwave Radiation. J Appl Meteorol 38(4):474–480

    Article  Google Scholar 

  • Ding B, Yang K, Qin J, Wang L, Chen Y, He X (2014) The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J Hydrol 513:154–163. doi:10.1016/j.jhydrol.2014.03.038

    Article  Google Scholar 

  • Farinotti D, Longuevergne L, Moholdt G, Duethmann D, Mölg T, Bolch T, Vorogushyn S, Güntner A (2015) Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat Geosci 8:716–722 doi:10.1038/ngeo2513

    Article  Google Scholar 

  • Favier V, Wagnon P, Ribstein P (2004) Glaciers of the outer and inner tropics: A different behaviour but a common response to climatic forcing. Geophys Res Lett 31:L16403. doi:10.1029/2004GL020654

    Article  Google Scholar 

  • Fujita K, Ageta Y (2000) Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J Glaciol 46(153):244–252. doi:10.3189/172756500781832945

    Article  Google Scholar 

  • Fujita K, Nuimura T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc Natl Acad Sci USA 108(34):14011–14014. doi:10.1073/pnas.1106242108

    Article  Google Scholar 

  • Fujita K, Sakai A (2014) Modelling runoff from a Himalayan debris-covered glacier. Hydrol Earth Syst Sci 18:2679–2694. doi:10.5194/hess-18-2679-2014

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7:1263–1286 doi:10.5194/tc-7-1263-2013

    Article  Google Scholar 

  • Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SR, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134):852–857. doi:10.1126/science.1234532

    Article  Google Scholar 

  • Giesen R, Van den Broeke M, Oerlemans J, Andreassen L (2008) Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: interannual variability and the effect of clouds. J Geophys Res 113:D21208. doi:10.1029/2008JD010390

    Article  Google Scholar 

  • Greuell W, Böhm R (1998) 2 m temperatures along melting mid-latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature. J Glaciol 44(146):9–20

    Article  Google Scholar 

  • Guo W, Liu S, Yao X, Xu J, Shangguan D, Wu L, Zhao J, Liu Q, Zongli Jiang Z, Wei J, Bao W, Yu P, Ding L, Li G, Li P, Ge C, Wang Y (2014) The second glacier inventory dataset of China (version 1.0). Cold and Arid Regions Science Data Center: Lanzhou, China doi:10.3972/glacier.001.2013.db

  • Guo W, Liu S, Xu J, Wu L, Shangguan D, Yao X, Wei J, Bao W, Yu P, Liu Q, Jiang Z (2015) The second Chinese glacier inventory: data, methods and results. J Glaciol 61(226):357–372. doi:10.3189/2015JoG14J209

    Article  Google Scholar 

  • Guo X, Wang L, Tian L (2016) Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau International. J Climatol 36(4):1901–1916. doi:10.1002/joc.4468

    Article  Google Scholar 

  • He J, Yang K (2011) China meteorological forcing dataset cold and arid regions science data center at Lanzhou. doi:10.3972/westdc.002.2014.db

  • Hewitt K (2005) The Karakoram Anomaly? Glacier Expansion and the ‘Elevation Effect,’ Karakoram Himalaya. Mt Res Dev 25(4):332–340 doi:10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2

    Article  Google Scholar 

  • Hock R, Holmgren B (2005) A distributed surface energy-balance model for complex topography and its application to Storglaciaren, Sweden. J Glaciol 51(172):25–36. doi:10.3189/172756505781829566

    Article  Google Scholar 

  • Holzer N, Vijay S, Yao T, Xu B, Buchroithner M, Bolch T (2015) Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere 9:2071–2088 doi:10.5194/tc-9-2071-2015

    Article  Google Scholar 

  • Huintjes E (2014) Energy and mass balance modelling for glaciers on the Tibetan Plateau: extension, validation and application of a coupled snow and energy balance model. PhD thesis, RWTH Aachen University, P 222, http://publications.rwth-aachen.de/record/459462

  • Huintjes E, Sauter T, Schröter B, Maussion F, Yang W, Kropáček J, Buchroithner M, Scherer D, Kang S, Schneider C (2015) Evaluation of a Coupled Snow and Energy Balance Model for Zhadang Glacier, Tibetan Plateau, Using Glaciological Measurements and Time-Lapse Photography. Arct Antarct Alp Res 47(3):573–590. doi:10.1657/AAAR0014-073

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate Change Will Affect the Asian Water Towers. Science 328(5984):1382–1385. doi:10.1126/science.1183188

    Article  Google Scholar 

  • Jiang X, Wang N, He J, Wu X, Song G (2010) A distributed surface energy and mass balance model and its application to a mountain glacier in China. Chin Sci Bull 55(20):2079–2087 doi:10.1007/s11434-010-3068-9

    Article  Google Scholar 

  • Kääb A, Treichler D, Nuth C, Berthier E (2015) Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 9:557–564 doi:10.5194/tc-9-557-2015

    Article  Google Scholar 

  • Kapnick SB, Delworth TL, Ashfaq M, Malyshev S, Milly PCD (2014) Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat Geosci 7:834–840 doi:10.1038/ngeo2269

    Article  Google Scholar 

  • Ke L, Ding X, Song C (2015) Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sens Environ 168:13–23

    Article  Google Scholar 

  • Li B, Yu Z, Liang Z, Acharya K (2014) Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Global Planet Change 118(4):69–84. doi:10.1016/j.gloplacha.2014.04.006

    Article  Google Scholar 

  • Li B, Acharya K, Yu Z, Liang Z, Su F (2015) The Mass and Energy Exchange of a Tibetan Glacier: Distributed Modeling and Climate Sensitivity. J Am Water Resour As 51(4):1088–1100. doi:10.1111/jawr.12286

    Article  Google Scholar 

  • Li S, Yao T, Yang W, Yu W, Zhu M (2016) Melt season hydrological characteristics of the Parlung No. 4 Glacier, in Gangrigabu Mountains, south-east Tibetan Plateau. Hydrol Process 30(8):1171–1191. doi:10.1002/hyp.10696

    Article  Google Scholar 

  • Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742. doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y

    Article  Google Scholar 

  • Liu Q, Liu S (2015) Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Clim Dyn 46(1–2):303–316 doi:10.1007/s00382-015-2585-2

    Google Scholar 

  • Liu S, Ding Y, Wang N, Xie Z (1998) Mass balance sensitivity to climate change of the Glacier No. 1 at the Urumqi River Head, Tianshan mountains. J Glaciol Geocryol 20(1):9–13 (Chinese with English abstract)

    Google Scholar 

  • Ma Y, Zhang Y, Yang D, Farhan SB (2015) Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region. Int J Climatol 35(7):1201–1211. doi:10.1002/joc.4045

    Article  Google Scholar 

  • Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2013) Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. J Clim 27(5):1910–1927. doi:10.1175/JCLI-D-13-00282.1

    Article  Google Scholar 

  • Mölg T, Hardy DR (2004) Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J Geophys Res 109:D16104. doi:10.1029/2003JD004338

    Article  Google Scholar 

  • Mölg T, Cullen NJ, Hardy DR, Kaser G, Klok L (2008) Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Int J Climatol 28(7):881–892. doi:10.1002/joc.1589

    Article  Google Scholar 

  • Mölg T, Maussion F, Yang W, Scherer D (2012) The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere 6:1445–1461 doi:10.5194/tc-6-1445-2012

    Article  Google Scholar 

  • Mölg T, Maussion F, Scherer D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Change 4(1):68–73 doi:10.1038/Nclimate2055

    Article  Google Scholar 

  • Neckel N, Kropáček J, Bolch T, Hochschild V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ res lett 9(1):014009. doi:10.1088/1748-9326/9/1/014009

    Article  Google Scholar 

  • Nicholson LI, Prinz R, Mölg T, Kaser G (2013) Micrometeorological conditions and surface mass and energy fluxes on Lewis Glacier, Mt Kenya, in relation to other tropical glaciers. Cryosphere 7:1205–1225 doi:10.5194/tc-7-1205-2013

    Article  Google Scholar 

  • Oerlemans J (2001) Glaciers and climate change. AA Balkema Publishers, Rotterdam

    Google Scholar 

  • Oerlemans J, Anderson B, Hubbard A, Huybrechts P, Johannesson T, Knap WH, Schmeits M, Stroeven AP, van de Wal RSW, Wallinga J, Zuo Z (1998) Modelling the response of glaciers to climate warming. Clim Dyn 14:267–274 doi:10.1007/s003820050222

    Article  Google Scholar 

  • Oerlemans J, Giesen RH, Van Den Broeke MR (2009) Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). J Glaciol 55(192):729–736. doi:10.3189/002214309789470969

    Article  Google Scholar 

  • Paterson W (1994) The physics of glaciers, 3rd edn. Oxford Press, Butterworth-Heinemann

  • Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley, JG, Gardner AS, Hagen JO, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mölg N, Paul F, Radić V, Rastner P, Raup BH, Rich J, Sharp MJ, The Randolph Consortium (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60(221):537–552 doi:10.3189/2014JoG13J176

    Article  Google Scholar 

  • Pu J, Yao T, Yang M, Tian L, Wang N, Ageta Y, Fujita K (2008) Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau. Hydrol Process 22(16):2953–2958. doi:10.1002/hyp.6865

    Article  Google Scholar 

  • Radić V, Menounos B, Shea J, Fitzpatrick N, Tessema MA, Déry SJ (2017) Evaluation of different methods to model near-surface turbulent fluxes for an alpine glacier in the Cariboo Mountains, BC, Canada. The Cryosphere Discuss https://doi.org/10.5194/tc-2017-80, in review, 2017

  • Rasmussen LA (2013) Meteorological controls on glacier mass balance in High Asia. Ann Glaciol 54(63):352–359. doi:10.3189/2013AoG63A353

    Article  Google Scholar 

  • Reijmer CH, Hock R (2008) Internal accumulation on Storglaciaren, Sweden, in a multi-layer snow model coupled to a distributed energy- and mass-balance model. J Glaciol 54(184):61–72. doi:10.3189/002214308784409161

    Article  Google Scholar 

  • Rupper S, Roe G, Gillespie A (2009) Spatial patterns of Holocene glacier advance and retreat in Central Asia. Quaternary Res 72(3):337–346

    Article  Google Scholar 

  • Salerno F, Guyennon N, Thakuri S, Viviano G, Romano E, Vuillermoz E, Cristofanelli P, Stocchi P, Agrillo G, Ma Y, Tartari G (2015) Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last two decades (1994–2013). Cryosphere 9:1229–1247 doi:10.5194/tcd-8-5911-2014

    Article  Google Scholar 

  • Shi Y, Liu C, Wang Z (2008) Concise Glacier Inventory of China Shanghai. Shanghai Popular Science Press, Shanghai

    Google Scholar 

  • Sicart JE, Hock R, Ribstein P, Litt M, Ramirez E (2011) Analysis of seasonal variations in mass balance and meltwater discharge of the tropical Zongo Glacier by application of a distributed energy balance model. J Geophys Res 116:D13105. doi:10.1029/2010JD015105

    Article  Google Scholar 

  • Sun W, Qin X, Ren J, Yang X, Zhang T, Liu Y, Cui X, Du W (2012) The Surface Energy Budget in the Accumulation Zone of the Laohugou Glacier No. 12 in the Western Qilian Mountains, China, in Summer 2009. Arct Antarct Alp Res 44(3):296–305. doi:10.1657/1938-4246-44.3.296

    Article  Google Scholar 

  • Sun W, Qin X, Du W, Liu W, Liu Y, Zhang T, Xu Y, Zhao Q, Wu J, Ren J (2014) Ablation modeling and surface energy budget in the ablation zone of Laohugou glacier No. 12, western Qilian mountains, China. Ann Glaciol 55(66):111–120. doi:10.3189/2014AoG66A902

    Article  Google Scholar 

  • Tian H, Yang T, Liu Q (2014) Climate change and glacier area shrinkage in the Qilian mountains, China, from 1956 to 2010. Anna Glaciol 55(66):187–197

    Article  Google Scholar 

  • Wagnon P, Ribstein P, Francou B, Pouyaud B (1999) Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia. J Geophys Res 104(D4):3907–3923. doi:10.1029/1998jd200011

    Article  Google Scholar 

  • Wagnon P, Vincent, C., Arnaud Y, Berthier E, Vuillermoz E, Gruber S, Ménégoz M, Gilbert A, Dumont M, Shea MJ, Stumm D, Pokhrel BK (2013) Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryosphere 7:1769–1786 doi:10.5194/tc-7-1769-2013

    Article  Google Scholar 

  • Wang N, He J, Pu J, Jiang X, Jing Z (2010) Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years. Chin Sci Bull 55(33):3810–3817 doi:10.1007/s11434-010-4167-3

    Article  Google Scholar 

  • Wang W, Yao T, Yang X (2011) Variations of glacial lakes and glaciers in the Boshula mountain range, southeast Tibet, from the 1970s to 2009. Ann Glaciol 52:9–17

    Article  Google Scholar 

  • Wang S, Pu J, Wang N (2012) Study on mass balance and sensitivity to climate change in summer on the Qiyi Glacier, Qilian Mountains. Sci Cold Arid Regions 4:281–287 doi:10.3724/SP.J.1226.2012.00281

    Article  Google Scholar 

  • Wang S, Yao T, Tian L, Pu J (2017) Glacier mass variation and its effect on surface runoff in the Beida River catchment during 1957–2013. J Glaciol 63(239):523–534 doi:10.1017/jog.2017.13

    Article  Google Scholar 

  • WGMS (2015) Global glacier change bulletin No. 1 (2012–2013). In: Zemp M, Gärtner-Roer I, Nussbaumer SU, Hüsler F, Machguth H, Mölg N, Paul F, and Hoelzle M. (eds.), ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, doi:10.5904/wgms-fog-2015-11

  • Wu X, He J, Jiang X, Wang N (2016) Analysis of surface energy and mass balance in the accumulation zone of Qiyi Glacier, Tibetan Plateau in an ablation season. Environ. Earth Sci 75:1–13. doi:10.1007/s12665-016-5591-8

    Article  Google Scholar 

  • Xu B, Cao J, Hansenc J, Yao T, Joswia DR, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu X, He J (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci USA 106(52):22114–22118 doi:10.1073/pnas.0910444106

    Article  Google Scholar 

  • Yang W, Yao T, Xu B, Ma L, Wang Z, Wan M (2010) Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo River basin, southeast Tibetan Plateau. Chin Sci Bull 55(20):2097–2102 doi:10.1007/s11434-010-3214-4

    Article  Google Scholar 

  • Yang W, Guo X, Yao T, Yang K, Zhao L, Li S, Zhu M (2011) Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. J Geophys Res 116:D14116. doi:10.1029/2010JD015183

    Article  Google Scholar 

  • Yang W, Yao T, Guo X, Zhu M, Li S, Kattel DB (2013) Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J Geophys Res 118(17):9579–9594. doi:10.1002/jgrd.50760

    Google Scholar 

  • Yang W, Guo X, Yao T, Zhu M, Wang Y (2016) Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Clim Dyn 47:805–815 doi:10.1007/s00382-015-2872-y

    Article  Google Scholar 

  • Yao T, Liu X, Wang N, Shi Y (2000) Amplitude of climatic changes in Qinghai-Tibetan Plateau. Chin Sci Bull 45(13):1236–1243

    Article  Google Scholar 

  • Yao T, Li Z, Yang W, Guo X, Zhu L, Kang S, Wu Y, Yu W (2010) Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Chin Sci Bull 55(20):2072–2078

    Article  Google Scholar 

  • Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2:663–667 doi:10.1038/nclimate1580

    Article  Google Scholar 

  • Yu W, Yao T, Kang S, Pu J, Yang W, Gao T, Zhao H, Zhou H, Li S, Wang W, Ma L (2013) Different region climate regimes and topography affect the changes in area and mass balance of glaciers on the north and south slopes of the same glacierized massif (the West Nyainqentanglha Range, Tibetan Plateau). J Hydrol 495:64–73. doi:10.1016/j.jhydrol.2013.04.034

    Article  Google Scholar 

  • Zafar M, Ahmed M, Rao M, Buckley B, Khan N, Wahab M, Palmer J (2016) Karakorum temperature out of phase with hemispheric trends for the past five centuries. Clim Dyn 46(5–6):1943–1952 doi:10.1007/s00382-015-2685-z

    Article  Google Scholar 

  • Zhang Y, Hirabayashi Y, Liu S (2012) Catchment-scale reconstruction of glacier mass balance using observations and global climate data: Case study of the Hailuogou catchment, south-eastern Tibetan Plateau. J Hydrol 444:146–160. doi:10.1016/j.jhydrol.2012.04.014

    Article  Google Scholar 

  • Zhang G, Kang S, Fujita K, Huintjes E, Xu J, Yamazaki T, Haginoya S, Yang W, Scherer D, Schneider C, Yao T (2013) Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. J Glaciol 59(213):137–148. doi:10.3189/2013AoG64A111

    Article  Google Scholar 

  • Zhang G, Yao T, Xie H, Wang W, Yang W (2015) An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Global Planet Change 131:148–157. doi:10.1016/j.gloplacha.2015.05.013

    Article  Google Scholar 

  • Zhang G, Kang S, Cuo L, Qu B (2016a) Modeling hydrological process in a glacier basin on the central Tibetan Plateau with a distributed hydrology soil vegetation model. J Geophys Res 121(16):9521–9539. doi:10.1002/2016JD025434

    Google Scholar 

  • Zhang Z, Liu S, Wei J, Xu J, Guo W, Bao W, Jiang Z (2016b) Mass Change of Glaciers in Muztag Ata-Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as Derived from Remote Sensing Data. PloS one 11(1):e0147327. doi:10.1371/journal.pone.0147327

    Article  Google Scholar 

  • Zhang G, Yao T, Piao S, Bolch T, Xie H, Chen D, Gao Y, O’Reilly CM, Shum CK, Yang K, Yi S, Lei Y, Wang W, He Y, Shang K, Yang X, Zhang H (2017) Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys Res Lett 44:252–260. doi:10.1002/2016GL072033

    Article  Google Scholar 

  • Zhu M, Yao T, Yang W, Maussion F, Huintjes E, Li S (2015) Energy- and mass-balance comparison between Zhadang and Parlung No. 4 glaciers on the Tibetan Plateau. J Glaciol 61(227):595–607. doi:10.3189/2015JoG14J206

    Article  Google Scholar 

  • Zhu M, Yao T, Yang W, Xu B, Wang X (2017) Evaluation of parameterizations of incoming longwave radiation in the high-mountain region of the Tibetan Plateau. J Appl Meteorol Clim 56(4):833–848. doi:10.1175/jamc-d-16-0189.1

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the staff at the Muztagh Ata Station for Westerly Environment Observation and Research and the Nam Co Monitoring and Research Station for Multisphere Interactions, Institute of Tibetan Research, Chinese Academy of Sciences, for help in the field. We thank the Third Pole Environment Database, Institute of Tibetan Research, Chinese Academy of Sciences and the National Climate Center, China Meteorological Administration, for providing the climate data used herein. We thank two anonymous reviewers for valuable insights that greatly strengthened the manuscript. We thank Dieter Scherer and Julia Curio (Technical University of Berlin) and Fabien Maussion (University of Innsbruck) for providing the HAR data, and Kun Yang (Institute of Tibetan Research, Chinese Academy of Sciences) for providing the CMFD data. The SRTM data and the Landsat data were provided by the US Geological Survey. This study was jointly funded by the National Natural Science Foundation of China (Grant Nos. 41190081, 91547104, 41601081, 91647205, 41371085, and 41125003) and the China Postdoctoral Science Foundation (Grant No. 2017M611014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meilin Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5445 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Yao, T., Yang, W. et al. Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau. Clim Dyn 50, 3457–3484 (2018). https://doi.org/10.1007/s00382-017-3817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3817-4

Keyword

Navigation