Skip to main content

Advertisement

Log in

The diurnal temperature range in the CMIP5 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper analyzes the diurnal temperature range (DTR) over land in simulations of the recent past and in future projections by 20 models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5). The annually averaged DTR is evaluated for the present-day climate using two gridded datasets (HadGHCND and CRU). The DTR varies substantially between different CMIP5 models, particularly in the subtropics, and is generally underestimated. In future projections of the high emission scenario RCP8.5, the models disagree on both the sign and the magnitude of the change in DTR. Still, a majority of the models project a globally averaged reduction in the DTR, with an increase over Europe, a decrease over the Sahara desert and a substantial decrease in DTR at high latitudes in winter. The general DTR reduction is partly linked to the enhancement of the downwelling clear sky longwave radiation due to greenhouse gases. At high latitudes in winter, the decrease in DTR seems to be enforced by an increase in cloudiness, but in most other regions counteracted by decreases in cloud fraction. Changes in the hydrological cycle and in the clear sky shortwave radiation also impact the DTR. The DTR integrates many processes and neither the model differences in the DTR nor in the change in DTR can be attributed to a single parameter. Which variables that impact the model discrepancies vary both regionally and seasonally. However, clouds seem to matter in most regions and seasons and the evaporative fraction is important in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bi D, Dix M, Marsland S, O’Farrell S, Rashid H, Uotila P, Hirst A, Kowalczyk E, Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin C, Sun Z, Vohralik P, Watterson I, Zhou X, Collier M, Ma Y, Noonan J, Stevens L, Uhe P, Zhu H, Griffies S, Hill R, Harris C, Puri K (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64

    Google Scholar 

  • Braganza K, Karoly DJ, Arblaster JM (2004) Diurnal temperature range as an index of global climate change during the twentieth century. Geophys Res Lett 31:L13217. doi:10.1029/2004GL019998

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Caesar J, Alexander L, Vose R (2006) Large-scale changes in observed daily maximum and minimum temperatures: creation and analysis of a new gridded data set. J Geophys Res 111:D05101. doi:10.1029/2005JD006280

    Google Scholar 

  • Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J (2008) Evaluation of HadGEM2 model. Meteorol Off Hadley Centre Tech Note 74:47

  • Cubasch U, Wuebbles D, Chen D, Facchini MC, Frame D, Mahowald N, Winther J-G (2013) IPCC-AR5, IPCC: working group I contribution to the IPCC fifth assesment report climate change 2013: the physical science basis

  • Dai A, Trenberth K, Karl T (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Clim 12:2451–2473

    Article  Google Scholar 

  • Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 17:930–951

    Article  Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz J-C, Ginoux P, Lin S-J, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Klein SA, Knutson TR, Langenhorst AR, Lee HC, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519. doi:10.1175/2011JCLI3955.1

    Article  Google Scholar 

  • Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PCD, Phillipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2012) GFDLs ESM2 global coupled climate-carbon earth system models. Part i: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665. doi:10.1175/JCLI-D-11-00560.1

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Clim Dyn 16:169–182. doi:10.1007/PL00013733

    Article  Google Scholar 

  • Harris I, Jones P, Osborn T, Lister D (2013) Updated high-resolution grids of monthly climatic observations—the cru ts3.10 dataset. Int J Clim. doi:10.1002/joc.3711

  • Hazeleger W, Severijns C, Semmler T, Tefnescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kå llberg P, Koenigk T, McGrath R, Miranda P, Van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willén U (2010) Ec-earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91:1357–1363. doi:10.1175/2010BAMS2877.1

    Article  Google Scholar 

  • Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque J-F, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. doi:10.1175/BAMS-D-12-00121.1

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindseay J, Charlson RJ, Peterson TC (1993) Asymmetric trends of daily maximum and minimum temperature. Bull Am Meteorol Soc 74:1007–1023

    Article  Google Scholar 

  • Lauritsen RG, Rogers JC (2012) U.S. diurnal temperature range variability and regional causal mechanisms, 1901–2002. J Clim 25:7216–7231. doi:10.1175/JCLI-D-11-00429.1

    Article  Google Scholar 

  • Lewis SC, Karoly DJ (2013) Evaluation of historical diurnal temperature range trends in CMIP5 models. J Clim 130715122904005. doi:10.1175/JCLI-D-13-00032.1

  • Lindvall J, Svensson G, Hannay C (2013) Evaluation of near-surface parameters in the two versions of the atmospheric model in CESM1 using flux station observations. J Clim 26:26–44. doi:10.1175/JCLI-D-12-00020.1

    Article  Google Scholar 

  • Lobell DB (2007) Changes in diurnal temperature range and national cereal yields. Agric For Meteorol 145:229–238. doi:10.1016/j.agrformet.2007.05.002

    Article  Google Scholar 

  • Lobell DB, Bonfils C, Duffy PB (2007) Climate change uncertainty for daily minimum and maximum temperatures: a model inter-comparison. Geophys Res Lett 34:L05715. doi:10.1029/2006GL028726

    Article  Google Scholar 

  • Makowski K, Jaeger EB, Chiacchio M, Wild M, Ewen T, Ohmura A (2009) On the relationship between diurnal temperature range and surface solar radiation in europe. J Geophys Res 114:D00D07. doi:10.1029/2008JD011104

    Google Scholar 

  • Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757. doi:10.5194/gmd-4-723-2011

    Article  Google Scholar 

  • McNider RT, Steeneveld G, Holtslag AAM, Pielke RA Sr, Mackaro S, Pour-Biazar A, Walters J, Nair U, Christy J (2012) Response and sensitivity of the nocturnal boundary layer over land to added longwave radiative forcing. J Geophys Res 117:D14106. doi:10.1029/2012JD017578

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Clim 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Mortin J, Graversen RG, Svensson G (2013) Evaluation of pan-Arctic melt-freeze onset in CMIP5 climate models and reanalyses using surface observations. Dyn Clim. doi:10.1007/s00382-013-1811-z

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Neale RB, Chen C-C, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque J-F, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F (2010) Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech Note TN-486, 268 pp

  • Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang M (2013) The mean climate of the community atmosphere model (CAM4) in forced sst and fully coupled experiments. J Clim 26:5150–5168. doi:10.1175/JCLI-D-12-00236.1

    Article  Google Scholar 

  • Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243:57–63. doi:10.1126/science.243.4887.57

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max Planck Institute for Meteorology Rep. 349, 127 pp

  • Rotstayn LD, Collier MA, Dix MR, Feng Y, Gordon HB, O’Farrell SP, Smith IN, Syktus J (2010) Improved simulation of Australian climate and enso-related rainfall variability in a global climate model with an interactive aerosol treatment. Int J Clim 30:1067–1088. doi:10.1002/joc.1952

    Google Scholar 

  • Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S (2006) Present-day atmospheric simulations using GISS modele: comparison to in situ, satellite, and reanalysis data. J Clim 19:153–192. doi:10.1175/JCLI3612.1

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res 118:1716–1733. doi:10.1002/jgrd.50203

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller HL (eds) (2007) IPCC-AR4, IPCC: Climate Change 2007: The scientific basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Technical report. Cambridge University Press, Cambridge

  • Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) The atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:1–27. doi:10.1002/jame.20015

    Article  Google Scholar 

  • Stone DA, Weaver AJ (2002) Daily maximum and minimum temperature trends in a climate model. Geophys Res Lett 29:1356. doi:10.1029/2001GL014556

    Article  Google Scholar 

  • Stone DA, Weaver AJ (2003) Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model. Clim Dyn 20:435–445. doi:10.1007/s00382-002-0288-y

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tjiputra JF, Roelandt C, Bentsen M, Lawrence DM, Lorentzen T, Schwinger J, Seland O, Heinze C (2013) Evaluation of the carbon cycle components in the norwegian earth system model (noresm). Geosci Model Dev 6:301–325. doi:10.5194/gmd-6-301-2013

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas D, Mélia Y, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine M-P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. doi:10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv Atmos Ocean Phys 46:414–431. doi:10.1134/S000143381004002X

    Article  Google Scholar 

  • von Salzen K, Scinocca JF, McFarlane NA, Li J, Cole JNS, Plummer D, Verseghy D, Reader MC, Ma X, Lazare M, Solheim L (2013) The canadian fourth generation atmospheric global climate model (CanAM4). part i: representation of physical processes. Atmosphere Ocean 51:104–125. doi:10.1080/07055900.2012.755610

    Article  Google Scholar 

  • Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett 32:L23822. doi:10.1029/2005GL024379

    Article  Google Scholar 

  • Watanabe M, Suzuki T, Oishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi:10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Wild M (2009) How well do IPCCAR4/CMIP3 climate models simulate global dimming/brightening and twentiethcentury daytime and nighttime warming? J Geophys Res 114:D00D11. doi:10.1029/2008JD011372

    Google Scholar 

  • Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen D, Li L (2010) The Beijing climate center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn 34:149–150. doi:10.1007/s00382-009-0594-8

    Article  Google Scholar 

  • Yi C, Ricciuto D, Li R, Wolbeck J, Xu X, Nilsson M, Aires L, Albertson JD, Ammann C, Arain MA, de Araujo AC, Aubinet M, Aurela M, Barcza Z, Barr A, Berbigier P, Beringer J, Bernhofer C, Black AT, Bolstad PV, Bosveld FC, Broadmeadow MSJ, Buchmann N, Burns SP, Cellier P, Chen J, Chen J, Ciais P, Clement R, Cook BD, Curtis PS, Dail DB, Dellwik E, Delpierre N, Desai AR, Dore S, Dragoni D, Drake BG, Dufrêne E, Dunn A, Elbers J, Eugster W, Falk M, Feigenwinter C, Flanagan LB, Foken T, Frank J, Fuhrer J, Gianelle D, Goldstein A, Goulden M, Granier A, Grünwald T, Gu L, Guo H, Hammerle A, Han S, Hanan NP, Haszpra L, Heinesch B, Helfter C, Hendriks D, Hutley LB, Ibrom A, Jacobs C, Johansson T, Jongen M, Katul G, Kiely G, Klumpp K, Knohl A, Kolb T, Kutsch WL, Lafleur P, Laurila T, Leuning R, Lindroth A, Liu H, Loubet B, Manca G, Marek M, Margolis HA, Martin TA, Massman WJ, Matamala R, Matteucci G, McCaughey H, Merbold L, Meyers T, Migliavacca M, Miglietta F, Misson L, Mölder M, Moncrieff J, Monson RK, Montagnani L, Montes-Helu M, Moors E, Moureaux C, Mukelabai MM, Munger JW, Myklebust M, Nagy Z, Noormets A, Oechel W, Oren R, Pallardy SG, Paw U KT, Pereira JAS, Pilegaard K, Pintér K, Pio C, Pita G, Powell TL, Rambal S, Randerson JT, von Randow C, Rebmann C, Rinne J, Rossi F, Roulet N, Ryel RJ, Sagerfors J, Saigusa N, Sanz MJ, Mugnozza G-S, Schmid HP, Seufert G, Siqueira M, Soussana J-F, Starr G, Sutton MA, Tenhunen J, Tuba Z, Tuovinen J-P, Valentini R, Vogel CS, Wang J, Wang S, Wang W, Welp LR, Wen X, Wharton S, Wilkinson M, Williams CA, Wohlfahrt G, Yamamoto S, Yu G, Zampedri R, Zhao B, Zhao X (2010) Climate control of terrestrial carbon exchange across biomes and continents. Environ Res Lett 5:034007. doi:10.1088/1748-9326/5/3/034007

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the meteorological research institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Jpn 90A:23–64. doi:10.2151/jmsj.2012-A02

    Article  Google Scholar 

  • Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka TY, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Meteorological research institute-earth system model version 1 (MRI-ESM1)—model description. Technical Report on Meteorology Research Institute, vol 64. Meteorology Research Institute, Japan, 83 pp

  • Zhou L, Dickinson RE, Dai A, Dirmeyer P (2010) Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: comparing multi-model simulations with observations. Clim Dyn 35:1289–1307. doi:10.1007/s00382-009-0644-2

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We also thank two anonymous reviewers for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Lindvall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindvall, J., Svensson, G. The diurnal temperature range in the CMIP5 models. Clim Dyn 44, 405–421 (2015). https://doi.org/10.1007/s00382-014-2144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2144-2

Keywords

Navigation