Skip to main content

Advertisement

Log in

Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30 hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30 hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Rayner NA et al. (2003) Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108: D14, 4407. doi:10.1029/2002JD002670

  • Andrews DG, Leovy CB, Holton JR (1987) Middle atmosphere dynamics. Academic Press, San Diego, pp 1–489

    Google Scholar 

  • Angell JK (1992) Evidence of a relation between El Niño and QBO, and for an El Niño in 1991–1992. Geophys Res Lett 19:285–288

    Article  Google Scholar 

  • Anstey J, Shepherd TG (2008) Response of the northern stratospheric polar vortex to the seasonal alignment of QBO phase transitions. Geophys Res Lett 35:L22810. doi:10.1029/2008GL035721

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584

    Article  Google Scholar 

  • Baldwin MP et al (2001) The quasi-biennial oscillation. Rev Geophys 39:179–229

    Article  Google Scholar 

  • Barnett TP (1991) The interaction of multiple time scales in the tropical climate system. J Clim 4:269–285

    Article  Google Scholar 

  • Bhalme HN, Rahalkar SS, Sikdar AB (1987) Tropical quasi-biennial oscillation of the 10 mb wind and Indian monsoon rainfall: implication for forecasting. J Climatol 7:345–353

    Article  Google Scholar 

  • Chan JCL (1995) Tropical cyclone activity in the western North Pacific in relation to the stratospheric quasi-biennial oscillation. Mon Weather Rev 123:2567–2571

    Article  Google Scholar 

  • Claud C, Terray P (2007) Revisiting the possible links between the quasi-biennial oscillation and the Indian summer monsoon using NCEP R-2 and CMAP fields. J Clim 20:773–787

    Article  Google Scholar 

  • Collimore CC, Hitchman MH, Martin DW (1998) Is there a quasi-biennial oscillation in tropical deep convection? Geophys Res Lett 25:333–336

    Article  Google Scholar 

  • Collimore CC, Martin CD, Hitchman MH, Huesmann A, Waliser DE (2003) On the relationship between the QBO and tropical deep convection. J Clim 16:2552–2568

    Article  Google Scholar 

  • Coughlin K, Tung KK (2004) Eleven-year solar cycle signal throughout the lower atmosphere. J Geophys Res 109:D21105. doi:10.1029/2004JD004873

    Article  Google Scholar 

  • Dunkerton TJ (1985) A two dimensional model of the quasi-biennial oscillation. J Atmos Sci 42:1151–1160

    Article  Google Scholar 

  • Dunkerton TJ (1997) The role of gravity waves in the quasi biennial oscillation. J Geophys Res 102:26053–26076

    Article  Google Scholar 

  • Dunkerton TJ, Delisi DP (1985) Climatology of the equatorial lower stratosphere. J Atmos Sci 42:376–396

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2007) Effects of the El Niño Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J Geophys Res 112:D19112. doi:10.1029/2007JD008481

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2011) The influence of the quasi-biennial oscillation on the troposphere in wintertime in a hierarchy of models, part 2: perpetual winter WACCM runs. J Atmos Sci (in press)

  • Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices J Clim 23: doi: 10.1175/2010JCLI3010.1

  • Gettelman A, de Forster PM (2002) Definition and climatology of the tropical tropopause layer. J Meteor Soc Jpn 80:911–924

    Google Scholar 

  • Gray WM, Sheaffer JD, Knaff JA (1992a) Hypothesized mechanism for stratospheric QBO influence on ENSO variability. Geophys Res Lett 19:107–110

    Article  Google Scholar 

  • Gray WM, Sheaffer JD, Knaff JA (1992b) Influence of the stratospheric QBO on ENSO variability. J Meteor Soc Jpn 70:975–995

    Google Scholar 

  • Hamilton K, Wilson RJ, Hemler RS (2001) Spontaneous stratospheric QBO-like oscillations simulated by the GFDL SKYHI general circulation model. J Atmos Sci 58:3271–3292

    Article  Google Scholar 

  • Ho C-H, Kim H-S, Jeong J-H, Son S-W (2009) Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific. Geophys Res Lett 36:L06702. doi:10.1029/2009GL037163

    Article  Google Scholar 

  • Holton JR (2004) An introduction to dynamic meteorology. Elsevier, California, pp 1–535

    Google Scholar 

  • Holton JR, Lindzen RS (1972) An updated theory for the quasi-biennial cycle of the tropical stratosphere. J Atmos Sci 29:1076–1080

    Article  Google Scholar 

  • Holton JR, Tan H-C (1980) The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J Atmos Sci 37:2200–2208

    Article  Google Scholar 

  • Hu Z–Z, Huang B, Kinter III JL, Wu Z, Kumar A (2011) Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: interdecadal variations. Clim Dyn. doi:10.1007/s00382-011-1073-6

  • Huang B, Kinter III JL (2002) Interannual variability in the tropical Indian Ocean. J Geophys Res 107: doi:10.1029/2001JC001278

  • Huang NE, Wu Z (2008) A review on Hilbert-Huang Transform: the method and its applications on geophysical studies. Rev Geophys 46: RG2006. doi:10.1029/2007RG000228

  • Huang NE et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond A 454:903–993

    Article  Google Scholar 

  • Huang B, Schopf PS, Pan Z (2002) The ENSO effect on the tropical Atlantic variability: a regionally coupled model study. Geophys Res Lett 29:2039. doi:10.1029/2002GL014872

    Article  Google Scholar 

  • Huesmann A, Hitchman MH (2001) The stratospheric quasi-biennial oscillation in the NCEP reanalyses: climatological structures. J Geophys Res 106:11859–11870

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471

    Article  Google Scholar 

  • Klotzbach PJ, Gray WM (2004) Updated 6–11-month prediction of Atlantic basin seasonal hurricane activity. Wea Forecast 19:917–934

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing long wave radiation dataset. Bull Amer Meteor Soc 77:1275–1277

    Google Scholar 

  • Lindzen RS, Holton JR (1968) A theory of the quasi-biennial oscillation. J Atmos Sci 25:1095–1107

    Article  Google Scholar 

  • Lu B, Pandolfo L, Hamilton K (2009) Nonlinear representation of the quasi-biennial oscillation. J Atmos Sci 66:1886–1904

    Article  Google Scholar 

  • Maruyama T, Tsuneoka Y (1988) Anomalously short duration of the easterly wind phase of the QBO at 50 hPa in 1987 and its relationship to an El Niño event. J Meteor Soc Jpn 66:629–634

    Google Scholar 

  • Moron V, Vautard R, Ghil M (1998) Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Clim Dyn 14:545–569

    Article  Google Scholar 

  • Naoe H, Shibata K (2010) Equatorial quasi biennial oscillation influence on 4 northern winter extratropical circulation. J Geophys Res 115:D19102. doi:10.1029/2009JD012952

    Article  Google Scholar 

  • Naujokat B (1986) An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J Atmos Sci 43:1873–1877

    Article  Google Scholar 

  • Pascoe CL, Gray LJ, Crooks SA, Juckes MN, Baldwin MP (2005) The quasi-biennial oscillation: analysis using ERA-40 data. J Geophys Res 110:D08105. doi:10.1029/2004JD004941

    Article  Google Scholar 

  • Pawson S, Fiorino M (1998) A comparison of reanalyses in the tropical stratosphere, part 2: the quasi-biennial oscillation. Clim Dyn 14:645–658

    Article  Google Scholar 

  • Plumb RA (1977) The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillation. J Atmos Sci 34:1847–1858

    Article  Google Scholar 

  • Plumb RA, Bell RC (1982) A model of the quasi-biennial oscillation on an equatorial beta-plane. Q J R Meteor Soc 108:335–352. doi:10.1256/smsqj.45603

    Article  Google Scholar 

  • Quiroz RS (1983) Relationships among the stratospheric and tropospheric zonal flows and the Southern Oscillation. Mon Weather Rev 111:143–154

    Article  Google Scholar 

  • Randel WJ, Wu F, Swinbank R, Nash J, ONeill A (1999) Global QBO circulation derived from UKMO stratospheric analyses. J Atmos Sci 56:457–574

    Article  Google Scholar 

  • Randel WJ, Wu F, Gaffen DJ (2000) Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J Geophys Res 105:15509–15523

    Article  Google Scholar 

  • Reed RJ (1964) A tentative model of the 26-month oscillation in tropical latitudes. Q J R Meteor Soc 90:441–466. doi:10.1002/qj.49709038607

    Article  Google Scholar 

  • Reed RJ, Campbell WJ, Rasmussen LA, Rogers RG (1961) Evidence of a downward propagating annual wind reversal in the equatorial stratosphere. J Geophys Res 66:813–818

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Shapiro LJ (1989) The relationship of the quasi-biennial oscillation to Atlantic tropical storm activity. Mon Weather Rev 117:1545–1552

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2003) Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J Clim 16:1495–1510

    Article  Google Scholar 

  • Taguchi M (2010) Observed connection of the stratospheric quasi-biennial oscillation with El Niño-Southern Oscillation in radiosonde data. J Geophys Res 115:D18120. doi:10.1029/2010JD014325

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteor Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Veryard RG, Ebdon RA (1961) Fluctuations in tropical stratospheric winds. Meteorol Mag 90:125–143

    Google Scholar 

  • Wallace JM, Panetta L, Estberg J (1993) A phase-space representation of the equatorial-stratospheric quasi-biennial oscillation. J Atmos Sci 50:1751–1762

    Article  Google Scholar 

  • Wang R, Fraedrich K, Pawson S (1995) Phase-space characteristics of the tropical stratospheric quasi-biennial oscillation. J Atmos Sci 52:4482–4500

    Article  Google Scholar 

  • Weare BC (2009) Structure of stratospheric wave responses to ENSO convection. J Clim 22:5089–5101

    Article  Google Scholar 

  • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise- assisted data analysis method. Adv Adapt Data Anal 1:1–41

    Article  Google Scholar 

  • Wu Z, Schneider EK, Kirtman BP, Sarachik ES, Huang NE, Tucker CJ (2008) Amplitude-frequency modulated annual cycle: an alternative reference frame for climate anomaly. Clim Dyn 31:doi:10.1007/s00382-008-0437-z

  • Wu Z, Huang NE, Chen X (2009) The multi-dimensional ensemble empirical mode decomposition method. Adv Adapt Data Anal 1:339–372

    Article  Google Scholar 

  • Wu Z, Huang NE, Wallace JM, Smoliak BV, Chen X (2011) On the time-varying trend in global-mean surface temperature. Clim Dyn 37:759–773. doi:10.1007/s00382-011-1128-8

    Article  Google Scholar 

  • Xu J-S (1992) On the relationship between the stratospheric quasi- biennial oscillation and the tropospheric Southern Oscillation. J Atmos Sci 49:725–734

    Article  Google Scholar 

  • Yasunari T (1989) A possible link of the QBOs between the stratosphere, troposphere and sea surface temperature in the tropics. J Meteor Soc Jpn 67:483–493

    Google Scholar 

Download references

Acknowledgments

Thanks go to James M. Wallace, Shuntai Zhou, Amy Butler, Xiaosong Yang, Cristiana Stan, and Jian Lu for their useful discussion and suggestions. This work was supported by the NOAA CVP Program (NA07OAR4310310) (Hu, Huang), as well as NSF ATM-0830062 (Huang, Kinter), NSF ATM-0830068, NOAA NA09OAR4310058, NASA NNX09AN50G (Hu, Huang, Kinter), NSF ATM-0917743 and AGS-1139479 (Wu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Zhen Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Hu, ZZ., Kinter, J.L. et al. Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle. Clim Dyn 38, 1–23 (2012). https://doi.org/10.1007/s00382-011-1250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1250-7

Keywords

Navigation