Skip to main content
Log in

Ante-natal counseling in phacomatoses

  • Annual issue paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objectives

Phacomatoses are a group of neuro-oculo-cutaneous syndromes/ neurocutaneous disorders, involving structures arising from the embryonic ectoderm. Most of phacomatoses including the most common ones:, neurofibromatosis type I and type II (NF1, NF2) and tuberosclerosis complex (TSC), are autosomal dominant genetic disorders with full penetrance and variable expression. As no effective treatment exists, the only way to prevent the disease, is by prenatal genetic diagnosis (either chorionic villus sampling-CVS or amniocentesis-AC) and termination of pregnancy or performing preimplantation genetic testing (PGT). As the risk for an affected offspring is 50% in every pregnancy of an affected parent, prenatal, and preimplantation testing are of great importance. However, those procedures are associated with technical and ethical concerns. This chapter shortly reviews the common phacomatoses emphasizes their genetics and inheritance. We will review the common methods for prenatal and preimplantation diagnoses and discuss its use in common phacomatoses.

Conclusion

Phacomatoses are common autosomal dominant genetic conditions with variable expression. Ante-natal genetic diagnosis is an appropriate approach for family planning in individuals affected by phacomatosis or parents of an affected child.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shirley MD, Tang H, Gallione CJ et al (2013) Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. New Eng J Med 368:1971–1979

    CAS  PubMed  Google Scholar 

  2. Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL (2009) Neurofibromatosis type 1 revisited. Pediatrics 123:124–133

    PubMed  Google Scholar 

  3. Kallionpää RA, Uusitalo E, Leppävirta J, Pöyhönen M, Peltonen S, Peltonen J (2018) Prevalence of neurofibromatosis type 1 in the Finnish population. Genet Med 20(9):1082–1086. https://doi.org/10.1038/gim.2017.215

    Article  PubMed  Google Scholar 

  4. Hyman SL, Arthur Shores E, North KN (2006) Arming disabilities in children with neurofibromatosis type 1: subtypes, cognitive profile, and attention-deficit-hyperactivity disorder. Dev Med Child Neurol 48(12):973–977

    PubMed  Google Scholar 

  5. Messiaen LM, Callens T, Mortier G, Beysen D, Vandenbroucke I, Van Roy N, Speleman F, Paepe AD (2000) Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15:541–555

    CAS  PubMed  Google Scholar 

  6. Wimmer K, Yao S, Claes K, Kehrer-Sawatzki H, Tinschert S, De Raedt T, Legius E, Callens T, Beiglböck H, Maertens O, Messiaen L (2006) Spectrum of single- and multiexon NF1 copy number changes in a cohort of 1,100 unselected NF1 patients. Genes Chromosom Cancer 45:265–276

    CAS  PubMed  Google Scholar 

  7. Rasmussen SA, Friedman JM (2000) NF1 gene and neurofibromatosis 1. Am J Epidemiol 151(1):33–40

    CAS  PubMed  Google Scholar 

  8. Bottillo I, Ahlquist T, Brekke H, Danielsen SA, van den Berg E, Mertens F, Lothe RA, Dallapiccola B (2009) Germline and somatic NF1 mutations in sporadic and NF1-associated malignant peripheral nerve sheath tumors. J Pathol 217(5):693–701

    CAS  PubMed  Google Scholar 

  9. Upadhyaya M, Spurlock G, Monem B, Thomas N, Friedrich RE, Kluwe L, Mautner V (2008) Germline and somatic NF1 gene mutations in plexiform neurofibromas. Hum Mutat 29(8):E103–E111

    PubMed  Google Scholar 

  10. Shofty B, Constantini S, Ben-Shachar S (2015) Advances in molecular diagnosis of neurofibromatosis type 1. Semin Pediatr Neurol 22(4):234–239. https://doi.org/10.1016/j.spen.2015.10.007

    Article  PubMed  Google Scholar 

  11. Riccardi VM, Dobson CE 2nd, Chakraborty R, Bontke C (1984) The pathophysiology of neurofibromatosis: IX. Paternal age as a factor in the origin of new mutations. Am J Med Genet 18(1):169–176

    CAS  PubMed  Google Scholar 

  12. Dubov T, Toledano-Alhadef H, Bokstein F, Constantini S, Ben-Shachar S (2016) The effect of parental age on the presence of de novo mutations - lessons from neurofibromatosis type I. Mol Genet Genomic Med 4(4):480–486

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lázaro C, Ravella A, Gaona A, Volpini V, Estivill X (1994) Neurofibromatosis type 1 due to germ-line mosaicism in a clinically normal father. N Engl J Med 331(21):1403–1407

    PubMed  Google Scholar 

  14. Tinschert S, Naumann I, Stegmann E, Buske A, Kaufmann D, Thiel G, Jenne DE (2000) Segmental neurofibromatosis is caused by somatic mutation of the Neurofibromatosis Type 1 (NF1) gene. Eur J Hum Genet:45–49

  15. Kehrer-Sawatzki H, Kluwe L, Sandig C, Kohn M, Wimmer K, Krammer U, Peyrl A, Jenne DE, Hansmann I, Mautner VF (2004) High frequency of mosaicism among patients with neurofibromatosis type 1 (NF1) with microdeletions caused by somatic recombination of the JJAZ1 Gene. Am J Hum Genet 75(3):410–423

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Evans DG, Howard E, Giblin C et al (2010) Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A 152a:327–332

    CAS  PubMed  Google Scholar 

  17. Parry DM, Eldridge R, Kaiser-Kupfer MI (1994) Neurofibromatosis 2 (NF2): clinical characteristics of 63 affected individuals and clinical evidence for heterogeneity. Am J Med Genet 52:450–461

    CAS  PubMed  Google Scholar 

  18. Evans DG, Moran A, King A et al (2005) Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otol Neurotol 26:93–97

    PubMed  Google Scholar 

  19. Smith MJ, Bowers NL, Bulman M, Gokhale C, Wallace AJ, King AT, Loyd SKL, Rutherfold SA, Hammerbeck-Ward CL, Freeman SR, Evans DG (2017) Revisiting neurofibromatosis type 2 diagnostic criteria to exclude LZTR1-related schwannomatosis. Neurology 88(1):87–92

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Evans DG, Ramsden RT, Shenton A et al (2007) Mosaicism in neurofibromatosis type 2: an update of risk based on uni/bilaterality of vestibular schwannoma at presentation and sensitive mutation analysis including multiple ligation-dependent probe amplification. J Med Genet 44:424–428

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Evans DG, Wallace AJ, Wu CL et al (1998) Somatic mosaicism: a common cause of classic disease in tumor-prone syndromes? Lessons from type 2 neurofibromatosis. Am J Hum Genet 63:727–736

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moyhuddin A, Baser ME, Watson C et al (2003) Somatic mosaicism in neurofibromatosis 2: prevalence and risk of disease transmission to offspring. J Med Genet 40:459–463

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruggieri M, Huson SM (2001) The clinical and diagnostic implications mosaicism in the neurofibromatoses. Neurology 56(11):1433–1443

    CAS  PubMed  Google Scholar 

  24. Louvrier C, Pasmant E, Briand-Suleau A, Cohen J, Nitschké P, Nectoux J, Orhant L, Zordan C, Goizet C, Goutagny S, Lallemand D, Vidaud M, Vidaud D, Kalamarides M, Parfait B (2018) Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis. Neuro-Oncology 20(7):917–929. https://doi.org/10.1093/neuonc/noy009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Northrup H, Koenig MK, Pearson DA, Au KS (2020) Tuberous sclerosis complex. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews® 1999 Jul 13 [updated 2020 Apr 16]. [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. Available at https://www.ncbi.nlm.nih.gov/books/NBK1220/. Accessed 1 may 2020

  26. Dragoumi P, O'Callaghan F, Zafeiriou DI (2018) Diagnosis of tuberous sclerosis complex in the fetus. Eur J Paediatr Neurol 22(6):1027–1034. https://doi.org/10.1016/j.ejpn.2018.08.005

    Article  PubMed  Google Scholar 

  27. Osborne JP, Fryer A, Webb D (1991) Epidemiology of tuberous sclerosis. Ann N Y Acad Sci 615:125–127

    CAS  PubMed  Google Scholar 

  28. Northrup H, Krueger DA (2013) International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Available online https://www.ncbi.nlm.nih.gov/books/NBK1201/. Accessed 13 Apr 2020.

  29. Tyburczy ME, Dies KA, Glass J et al (2015) Mosaic and intronic mutations in TSC1/TSC2 explain the majority of TSC patients with no mutation identified by conventional testing. PLoS Genet 11(11):e1005637. Published 2015 Nov 5. https://doi.org/10.1371/journal.pgen.1005637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saada J, Hadj Rabia S, Fermont L, Le Bidois J, Bernades-Stein L, Martinovic J, Sonigo P, Dumez Y, Bonnet D, Benachi A (2009) Prenatal diagnosis of cardiac rhabdomyomas: incidence of associated cerebral lesions of tuberous sclerosis complex. Ultrasound Obstet Gynecol 34:155–159. https://doi.org/10.1002/uog.6367

    Article  CAS  PubMed  Google Scholar 

  31. Papp C, Papp Z (2003) Chorionic villus sampling and amniocentesis: what are the risks in current practice? Curr Opin Obstet Gynecol 15(2):159–165

    PubMed  Google Scholar 

  32. Odibo AO, Gray DL, Dicke JM et al (2008) Revisiting the fetal loss rate after second trimester genetic amniocentesis: a single center’s 16 year experience. Obstet Gynecol 111:589–595

    PubMed  Google Scholar 

  33. Akolekar R, Beta J, Picciarelli G, Ogilvie C, D'Antonio F (2015) Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45:16–26

    CAS  PubMed  Google Scholar 

  34. Wulff CB, Gerds TA, Rode L et al (2016) Risk of fetal loss associated with invasive testing following combined first trimester screening for Down syndrome: a national cohort of 147,987 singleton pregnancies. Ultrasound Obstet Gynecol 47:48–44

    Google Scholar 

  35. Ghi T, Sotiriadis A, Calda P, Da Silva CF, Raine-Fenning N, Alfirevic Z, McGillivray G, on behalf of the International Society of Ultrasound in Obstetrics and Gynecology (2016) ISUOG Practice Guidelines: invasive procedures for prenatal diagnosis in obstetrics. Ultrasound Obstet Gynecol 48:256–268

    CAS  PubMed  Google Scholar 

  36. Rhoads GG, Jackson LG, Schlesselman SE et al (1989) The safety and efficacy of chorionic villus sampling for early prenatal diagnosis of cytogenetic abnormalities. N Engl J Med 320:609–617

    CAS  PubMed  Google Scholar 

  37. Brun JL, Mangione R, Gangbo F et al (2003) Feasibility, accuracy and safety of chorionic villus sampling: a report of 10741 cases. Prenat Diagn 23(4):295–301

    PubMed  Google Scholar 

  38. Terzi YK, Oguzkan-Balci S, Anlar B et al (2009) Reproductive decisions after prenatal diagnosis in neurofibromatosis type 1: importance of genetic counseling. Genet Couns 20(2):195–202

    CAS  PubMed  Google Scholar 

  39. Zegers-Hochschild F, Adamson GD, Dyer S et al (2017) The international glossary on infertility and fertility care. Hum Reprod 32(9):1786–1801. https://doi.org/10.1093/humrep/dex234

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen HF, Chen SU, Ma GC et al (2018) Preimplantation genetic diagnosis and screening: current status and future challenges. J Formos Med Assoc 117(2):94–100

    PubMed  Google Scholar 

  41. Cimadomo D, Capalbo A, Ubaldi FM, Scarica C, Palagiano A, Canipari R, Rienzi L (2016) The impact of biopsy on human embryo developmental potential during preimplantation genetic diagnosis. Biomed Res Int:7193075. https://doi.org/10.1155/2016/7193075

  42. Scott KL, Hong KH, Scott RT (2013) Selecting the optimal time to perform biopsy for preimplantation genetic testing. Fertil Steril 100(3):608–614. https://doi.org/10.1016/j.fertnstert.2013.07.004

    Article  PubMed  Google Scholar 

  43. Lee VCY, Chow JFC, Yeung WSB, Ho PC (2017) Preimplantation genetic diagnosis for monogenic diseases. Best Pract Res Clin Obstet Gynaecol 44:68–75

    PubMed  Google Scholar 

  44. Sermon K (2017) Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy. Expert Rev Mol Diagn 17(1):71–82

    CAS  PubMed  Google Scholar 

  45. De Rycke M, Goossens V, Kokkali G, Meijer-Hoogeveen M, Coonen E, Moutou C (2017) ESHRE PGD Consortium data collection XIV–XV: cycles from January 2011 to December 2012 with pregnancy follow-up to October 2013. Hum Reprod 32(10):1974–1994. https://doi.org/10.1093/humrep/dex265

    Article  PubMed  Google Scholar 

  46. Kawwass JF, Badell ML (2018) Maternal and fetal risk associated with assisted reproductive technology. Obstet Gynecol 132(3):763–772

    PubMed  Google Scholar 

  47. Heijligers M, van Montfoort A, Meijer-Hoogeveen M et al (2018) Perinatal follow-up of children born after preimplantation genetic diagnosis between 1995 and 2014. J Assist Reprod Genet 35(11):1995–2002

    PubMed  PubMed Central  Google Scholar 

  48. Davies MJ, Moore VM, Willson KJ et al (2012) Reproductive technologies and the risk of birth defects. N Engl J Med 366(19):1803–1813. https://doi.org/10.1056/NEJMoa1008095

    Article  CAS  PubMed  Google Scholar 

  49. Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S (2015) A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update 21:555–557

    CAS  PubMed  Google Scholar 

  50. Wilton L, Thornhill A, Traeger-Synodinos J, Sermon KD, Harper JC (2009) The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod 24(5):1221–1228. https://doi.org/10.1093/humrep/den488 Epub 2009 Jan 20

    Article  CAS  PubMed  Google Scholar 

  51. Butler R, Nakhuda G, Guimond C et al (2019) Analysis of PGT-M and PGT-SR outcomes at a Canadian fertility clinic. Prenat Diagn 39(10):866–870

    PubMed  Google Scholar 

  52. Harper JC, Wilton L, Traeger-Synodinos J et al (2012) The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update 18(3):234–247

    CAS  PubMed  Google Scholar 

  53. Spits C, De Rycke M, Van Rants N et al (2005) Preimplantation genetic diagnosis for neurofibromatosis type 1. Mol Hum Reprod 11(5):381–387 Epub 2005 Apr 15

    CAS  PubMed  Google Scholar 

  54. Merker VL, Murphy TP, Hughes JB et al (2015) Outcomes of preimplantation genetic diagnosis in neurofibromatosis type 1. Fertil Steril 103(3):761–768

    PubMed  Google Scholar 

  55. Naja RP, Dhanjal S, Doshi A et al (2016) The impact of mosaicism in preimplantation genetic diagnosis (PGD): approaches to PGD for dominant disorders in couples without family history. Prenat Diagn 36(9):864–870

    CAS  PubMed  Google Scholar 

  56. Simpson JL, Kuliev A, Rechitsky S (2019) Overview of preimplantation genetic diagnosis (PGD): historical perspective and future direction. Methods Mol Biol 1885:23–43

    CAS  PubMed  Google Scholar 

  57. Ma H, Marti-Gutierrez N, Park SW et al (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548:413–419. https://doi.org/10.1038/nature23305-419

    Article  CAS  PubMed  Google Scholar 

  58. Altarescu G, Beeri R, Eldar-Geva T, Varshaver I, Margalioth EJ, Levy-Lahad E, Renbaum P (2012) PGD for germline mosaicism. Reprod BioMed Online 25(4):390–395

    CAS  PubMed  Google Scholar 

  59. Chitty LS, Mason S, Barrett AN et al (2015) Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenat Diagn 35(7):656–662. https://doi.org/10.1002/pd.4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perlado S, Bustamante-Aragonés A, Donas M et al (2016) Fetal genotyping in maternal blood by digital PCR: towards NIPD of monogenic disorders independently of parental origin. PLoS One 11(4)

  61. Hayward J, Chitty L (2018) Beyond screening for chromosomal abnormalities: advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing. Semin Fetal Neonatal Med 23(2):94–101

    PubMed  Google Scholar 

  62. Gruber A, Pacault M, El Khattabi LA et al (2018) Non-invasive prenatal diagnosis of paternally inherited disorders from maternal plasma: detection of NF1 and CFTR mutations using droplet digital PCR. Clin Chem Lab Med 56(5):728–738. https://doi.org/10.1515/cclm-2017-0689

    Article  CAS  PubMed  Google Scholar 

  63. Wolf DP, Mitalipov PA, Mitalipov SM (2019) Principles of and strategies for germline gene therapy. Nat Med 25:890–897

    CAS  PubMed  Google Scholar 

  64. Li H, Yang Y, Hong W et al (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Sig Transduct Target Ther 5:1

    Google Scholar 

  65. Harper JC, Schatten G (2019) Are we ready for genome editing in human embryos for clinical purposes? Eur J Med Genet 62(8):103682

    PubMed  Google Scholar 

  66. Nuffield Council on Bioethics (2018) Genome editing and human reproduction: social and ethical issues. Available at https://scipol.duke.edu/track/genome-editing-and-human-reproduction-social-and-ethical-issues. Accessed 1 May 2020.

  67. UNESCO (2018) UNESCO cautions against reckless application of gene editing. Available at https://en.unesco.org/news/unesco-cautions-against-reckless-application-gene-editing Accessed 1 may 2020

  68. National Academies of Sciences, Engineering, and Medicine; National Academy of Medicine; National Academy of Sciences; Committee on Human Gene Editing: Scientific, Medical, and Ethical Considerations (2017) Human Genome Editing: Science, Ethics, and Governance. the National Academies Press, Washington, DC

    Google Scholar 

  69. Wertz DC, Fletcher JC (1988) Attitudes of genetic counselors: a multinational survey. Am J Hum Genet 42(4):592–600

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shay Ben-Shachar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brabbing-Goldstein, D., Ben-Shachar, S. Ante-natal counseling in phacomatoses. Childs Nerv Syst 36, 2269–2277 (2020). https://doi.org/10.1007/s00381-020-04776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04776-3

Keywords

Navigation