Skip to main content

Advertisement

Log in

Adamantinomatous craniopharyngioma: advances in proteomic research

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Many efforts have been performed in the last decade to accomplish the genomic and proteomic characterization of pediatric adamantinomatous craniopharyngioma with the purpose to elucidate the molecular mechanisms underlying the onset and development of this pediatric brain tumor, its high recurrence rate, and, although classified as a histologically benign neoplasm, its aggressive behavior.

Methods

The focus of this review is to perform the new comparison of the proteomic profiles of the solid component and the intracystic fluid of adamantinomatous craniopharyngioma based on our previous results, obtained by both the top-down and the bottom-up proteomic approaches, to disclose differences and similarities, and to discuss the results in the context of the most recent literature.

Results and conclusions

Proteins and peptides identified in the cyst fluid and in the solid component of adamantinomatous craniopharyngioma (AC) include beyond markers of inflammation (i.e., alpha-defensins), proteins involved in cell migration and protein degradation (i.e., beta-thymosin and ubiquitin peptides), whose main role might be in tumor growth and infiltration of the surrounding neural structures. These last appeared different in the solid components compared with the cyst fluid, missing their terminal part in the solid tissue, a feature generally associated to malignancies, which might represent a distinct molecular site for an aggressive behavior of AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Massimi L, Martelli C, Caldarelli M, Castagnola M, Desiderio C (2017) Proteomics in pediatric cystic craniopharyngioma. Brain Pathol 27:370–376

    CAS  PubMed  Google Scholar 

  2. Hengartner AC, Prince E, Vijmasi T Hankinson TC (2020) Adamantinomatous craniopharyngioma: moving toward targeted therapies. Neurosurg Focus 48:E7

  3. Whelan R, Prince E, Gilani A, Hankinson T (2020) The inflammatory milieu of adamantinomatous craniopharyngioma and its implications for treatment. J Clin Med 9:519

    CAS  PubMed Central  Google Scholar 

  4. Donson AM, Apps J, Griesinger AM, Amani V, Witt DA, Anderson RCE, Niazi TN, Grant G, Souweidane M, Johnston JM, Jackson EM, Kleinschmidt-DeMasters B, Handler MH, Tan AC, Gore L, Virasami A, Gonzalez-Meljem JM, Jacques TS, Martinez-Barbera JP, Foreman NK, Hankinson TC, Advancing Treatment for Pediatric Craniopharyngioma Consortium (2017) Molecular analyses reveal inflammatory mediators in the solid component and cyst fluid of human adamantinomatous craniopharyngioma. J Neuropathol Exp Neurol 76:779–788

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Iavarone F, Desiderio C, Vitali A, Messana I, Martelli C, Castagnola M, Cabras T (2018) Cryptides: latent peptides everywhere. Crit Rev Biochem Mol Biol 53:246–263

    CAS  PubMed  Google Scholar 

  6. Pettorini BL, Inzitari R, Massimi L, Tamburrini G, Caldarelli M, Fanali C, Cabras T, Messana I, Castagnola M, Di Rocco C (2010) The role of inflammation in the genesis of the cystic component of craniopharyngiomas. Childs Nerv Syst 26:1779–1784

    PubMed  Google Scholar 

  7. Desiderio C, Martelli C, Rossetti DV, Di Rocco C, D’Angelo L, Caldarelli M, Tamburrini G, Iavarone F, Castagnola M, Messana I, Cabras T, Faa G (2013) Identification of thymosins β4 and β 10 in paediatric craniopharyngioma cystic fluid. Childs Nerv Syst 29:951–960

    PubMed  Google Scholar 

  8. Martelli C, Iavarone F, Vincenzoni F, Rossetti DV, D’Angelo L, Tamburrini G, Caldarelli M, Di Rocco C, Messana I, Castagnola M, Desiderio C (2014) Proteomic characterization of pediatric craniopharyngioma intracystic fluid by LC-MS top-down/bottom-up integrated approaches. Electrophoresis 35:2172–2183

    CAS  PubMed  Google Scholar 

  9. Martelli C, Serra R, Inserra I, Rossetti DV, Iavarone F, Vincenzoni F, Castagnola M, Urbani A, Tamburrini G, Caldarelli M, Massimi L, Desiderio C (2019) Investigating the protein signature of adamantinomatous craniopharyngioma pediatric brain tumor tissue: towards the comprehension of its aggressive behavior. Dis Markers 2;2019:3609789 https://doi.org/10.1155/2019/3609789

  10. Fernandez-Miranda JC, Gardner PA, Snyderman CH, Devaney KO, Strojan P, Suárez C, Genden EM, Rinaldo A, Ferlito A (2012) Craniopharyngioma: a pathologic, clinical, and surgical review. Head Neck 34:1036–1044

    PubMed  Google Scholar 

  11. Maneerat Y, Prasongsukarn K, Benjathummarak S, Dechkhajorn W, Chaisri U (2016) Increased alpha-defensin expression is associated with risk of coronary heart disease: a feasible predictive inflammatory biomarker of coronary heart disease in hyperlipidemia patients. Lipids Health Dis 15:117

    PubMed  PubMed Central  Google Scholar 

  12. Ramasundara M, Leach ST, Lemberg DA, Day AS (2009) Defensins and inflammation: the role of defensins in inflammatory bowel disease. J Gastroenterol Hepatol 24:202–208

    CAS  PubMed  Google Scholar 

  13. Brook M, Tomlinson GH, Miles K, Smith RW, Rossi AG, Hiemstra PS, van ‘t Wout EF, Dean JL, Gray NK, Lu W, Gray M (2016) Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. Proc Natl Acad Sci U S A 113:4350–4355

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hannappel E (2007) Beta-thymosins. Ann N Y Acad Sci 1112:21–37

    CAS  Google Scholar 

  15. Goldstein AL, Badamchian M (2004) Thymosins: chemistry and biological properties in health and disease. Expert Opin Biol Ther 4:559–573

    CAS  PubMed  Google Scholar 

  16. Pardon MC (2018) Anti-inflammatory potential of thymosin β4 in the central nervous system: implications for progressive neurodegenerative diseases. Expert Opin Biol Ther 18(sup1):165–169

    CAS  PubMed  Google Scholar 

  17. Crockford D, Turjman N, Allan C, Angel J (2010) Thymosin beta4: structure, function, and biological properties supporting current and future clinical applications. Ann N Y Acad Sci 1194:179–189

    CAS  PubMed  Google Scholar 

  18. Sanders MC, Goldstein AL, Wang YL (1992) Thymosin beta 4 (Fx peptide) is a potent regulator of actin polymerization in living cells. Proc Natl Acad Sci U S A 89:4678–4682

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Qiu P, Wheater MK, Qiu Y, Sosne G (2011) Thymosin beta4 inhibits TNF-alpha-induced NF-kappaB activation, IL-8 expression, and the sensitizing effects by its partners PINCH-1 and ILK. FASEB J 25:1815–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nemolato S, Restivo A, Cabras T, Coni P, Zorcolo L, Orrù G, Fanari M, Cau F, Gerosa C, Fanni D, Messana I, Castagnola M, Casula G, Faa G (2012) Thymosin β 4 in colorectal cancer is localized predominantly at the invasion front in tumor cells undergoing epithelial mesenchymal transition. Cancer Biol Ther 13:191–197

    CAS  PubMed  Google Scholar 

  21. Yu FX, Lin SC, Morrison-Bogorad M, Yin HL (1994) Effects of thymosin beta 4 and thymosin beta 10 on actin structures in living cells. Cell Motil Cytoskeleton 27:13–25

    CAS  PubMed  Google Scholar 

  22. Kuzan A (2016) Thymosin β as an actin-binding protein with a variety of functions. Adv Clin Exp Med 25:1331–1336

    PubMed  Google Scholar 

  23. Chen C, Li M, Yang H, Chai H, Fisher W, Yao Q (2005) Roles of thymosins in cancers and other organ systems. World J Surg 29:264–270

    PubMed  Google Scholar 

  24. Goldstein AL (2003) Thymosin beta4: a new molecular target for antitumor strategies. J Natl Cancer Inst 95:1646–1647

    CAS  PubMed  Google Scholar 

  25. Sribenja S, Li M, Wongkham S, Wongkham C, Yao Q, Chen C (2009) Advances in thymosin beta10 research: differential expression, molecular mechanisms, and clinical implications in cancer and other conditions. Cancer Investig 27:1016–1022

    CAS  Google Scholar 

  26. Xiao Y, Chen Y, Wen J, Yan W, Zhou K, Cai W (2012) Thymosin β4: a potential molecular target for tumor therapy. Crit Rev Eukaryot Gene Expr 22:109–116

    CAS  PubMed  Google Scholar 

  27. Cha HJ, Jeong MJ, Kleinman HK (2003) Role of thymosin beta4 in tumor metastasis and angiogenesis. J Natl Cancer Inst 95:1674–1680

    CAS  PubMed  Google Scholar 

  28. Zhang Y, Feurino LW, Zhai Q, Wang H, Fisher WE, Chen C, Yao Q, Li M (2008) Thymosin Beta 4 is overexpressed in human pancreatic cancer cells and stimulates proinflammatory cytokine secretion and JNK activation. Cancer Biol Ther 7:419–423

    CAS  PubMed  Google Scholar 

  29. Oh SY, Song JH, Gil JE, Kim JH, Yeom YI, Moon EY (2006) ERK activation by thymosin-beta-4 (TB4) overexpression induces paclitaxel-resistance. Exp Cell Res 312:1651–1657

    CAS  PubMed  Google Scholar 

  30. Gemoll T, Strohkamp S, Schillo K, Thorns C, Habermann JK (2015) MALDI-imaging reveals thymosin beta-4 as an independent prognostic marker for colorectal cancer. Oncotarget 6:43869–43880

    PubMed  PubMed Central  Google Scholar 

  31. Theunissen W, Fanni D, Nemolato S, Di Felice E, Cabras T, Gerosa C, Van Eyken P, Messana I, Castagnola M, Faa G (2014) Thymosin beta 4 and thymosin beta 10 expression in hepatocellular carcinoma. Eur J Histochem 58:2242

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang X, Ren D, Guo L, Wang L, Wu S, Lin C, Ye L, Zhu J, Li J, Song L, Lin H, He Z (2017) Thymosin beta 10 is a key regulator of tumorigenesis and metastasis and a novel serum marker in breast cancer. Breast Cancer Res 19:15

    PubMed  PubMed Central  Google Scholar 

  33. Wirsching HG, Krishnan S, Florea AM, Frei K, Krayenbühl N, Hasenbach K, Reifenberger G, Weller M, Tabatabai G (2014) Thymosin β 4 gene silencing decreases stemness and invasiveness in glioblastoma. Brain 137(Pt 2):433–448

    Google Scholar 

  34. Lee JW, Kim HS, Moon EY (2019) Thymosin β-4 is a novel regulator for primary cilium formation by nephronophthisis 3 in HeLa human cervical cancer cells. Sci Rep 9:6849

    PubMed  PubMed Central  Google Scholar 

  35. Martelli C, Iavarone F, D’Angelo L, Arba M, Vincenzoni F, Inserra I, Delfino D, Rossetti DV, Caretto M, Massimi L, Tamburrini G, Di Rocco C, Caldarelli M, Messana I, Castagnola M, Sanna MT, Desiderio C (2015) Integrated proteomic platforms for the comparative characterization of medulloblastoma and pilocytic astrocytoma pediatric brain tumors: a preliminary study. Mol BioSyst 11:1668–1683

    CAS  PubMed  Google Scholar 

  36. Rossetti DV, Massimi L, Martelli C, Vincenzoni F, Di Silvestre S, Scorpio G, Tamburrini G, Caldarelli M, Urbani A, Desiderio C (2020) Ependymoma pediatric brain tumor protein fingerprinting by integrated mass spectrometry platforms: a pilot investigation. Cancers (Basel) 12:674

    CAS  Google Scholar 

  37. Delfino D, Rossetti DV, Martelli C, Inserra I, Vincenzoni F, Castagnola M, Urbani A, Scarpa S, Fuso A, Cavallaro RA, Desiderio C (2019) Exploring the brain tissue proteome of TgCRND8 Alzheimer’s disease model mice under B vitamin deficient diet induced hyperhomocysteinemia by LC-MS top-down platform. J Chromatogr B Analyt Technol Biomed Life Sci 1124:165–172

    CAS  PubMed  Google Scholar 

  38. Cabras T, Iavarone F, Martelli C, Delfino D, Rossetti DV, Inserra I, Manconi B, Desiderio C, Messana I, Hannappel E, Faa G, Castagnola M (2015) High-resolution mass spectrometry for thymosins detection and characterization. Expert Opin Biol Ther 15:S191–S201

    PubMed  Google Scholar 

  39. Heintz D, Reichert A, Mihelic-Rapp M, Stoeva S, Voelter W, Faulstich H (1994) The sulfoxide of thymosin beta 4 almost lacks the polymerization-inhibiting capacity for actin. Eur J Biochem 223:345–350

    CAS  PubMed  Google Scholar 

  40. Young JD, Lawrence AJ, MacLean AG, Leung BP, McInnes IB, Canas B, Pappin DJ, Stevenson RD (1999) Thymosin beta 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat Med 5:1424–1427

    CAS  PubMed  Google Scholar 

  41. Evans MA, Smart N, Dubé KN, Bollini S, Clark JE, Evans HG, Taams LS, Richardson R, Lévesque M, Martin P, Mills K, Riegler J, Price AN, Lythgoe MF, Riley PR (2013) Thymosin β4-sulfoxide attenuates inflammatory cell infiltration and promotes cardiac wound healing. Nat Commun 4:2081

    PubMed  PubMed Central  Google Scholar 

  42. Hardesty WM, Kelley MC, Mi D, Low RL, Caprioli RM (2011) Protein signatures for survival and recurrence in metastatic melanoma. J Proteome 74:1002–1014

    CAS  Google Scholar 

  43. Hegedus CM, Gunn L, Skibola CF, Zhang L, Shiao R, Fu S, Dalmasso EA, Metayer C, Dahl GV, Buffler PA, Smith MT (2005) Proteomic analysis of childhood leukemia. Leukemia 19:1713–1718

    CAS  PubMed  Google Scholar 

  44. Gonçalves A, Charafe-Jauffret E, Bertucci F, Audebert S, Toiron Y, Esterni B, Monville F, Tarpin C, Jacquemier J, Houvenaeghel G, Chabannon C, Extra JM, Viens P, Borg JP, Birnbaum D (2008) Protein profiling of human breast tumor cells identifies novel biomarkers associated with molecular subtypes. Mol Cell Proteomics 7:1420–1433

    PubMed  PubMed Central  Google Scholar 

  45. Laouirem S, Le Faouder J, Alexandrov T, Mestivier D, Léger T, Baudin X, Mebarki M, Paradis V, Camadro JM, Bedossa P (2014) Progression from cirrhosis to cancer is associated with early ubiquitin post-translational modifications: identification of new biomarkers of cirrhosis at risk of malignancy. J Pathol 234:452–463

    CAS  PubMed  Google Scholar 

  46. Desiderio C, D’Angelo L, Rossetti DV, Iavarone F, Giardina B, Castagnola M, Massimi L, Tamburrini G, Di Rocco C (2012) Cerebrospinal fluid top-down proteomics evidenced the potential biomarker role of LVV- and VV-hemorphin-7 in posterior cranial fossa pediatric brain tumors. Proteomics 12:2158–2166

    CAS  PubMed  Google Scholar 

  47. Schuhmann MU, Zucht HD, Nassimi R, Heine G, Schneekloth CG, Stuerenburg HJ, Selle H (2010) Peptide screening of cerebrospinal fluid in patients with glioblastoma multiforme. Eur J Surg Oncol 36:201–207

    CAS  PubMed  Google Scholar 

  48. Ziegler ME, Chen T, LeBlanc JF, Wei X, Gjertson DW, Li KC, Khalighi MA, Lassman CR, Veale JL, Gritsch HA, Reed EF (2011) Apolipoprotein A1 and C-terminal fragment of α-1 antichymotrypsin are candidate plasma biomarkers associated with acute renal allograft rejection. Transplantation 92:388–395

    CAS  PubMed  Google Scholar 

  49. Pimenta DC, Chen VC, Chao J, Juliano MA, Juliano L (2000) Alpha1-antichymotrypsin and kallistatin hydrolysis by human cathepsin D. J Protein Chem 19:411–418

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudia Desiderio or Gianpiero Tamburrini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desiderio, C., Rossetti, D.V., Castagnola, M. et al. Adamantinomatous craniopharyngioma: advances in proteomic research. Childs Nerv Syst 37, 789–797 (2021). https://doi.org/10.1007/s00381-020-04750-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04750-z

Keywords

Navigation