Skip to main content

Advertisement

Log in

Resting state signal latency predicts laterality in pediatric medically refractory temporal lobe epilepsy

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Temporal lobe epilepsy (TLE) affects resting state brain networks in adults. This study aims to correlate resting state functional MRI (rsMRI) signal latency in pediatric TLE patients with their laterality.

Methods

From 2006 to 2016, 26 surgical TLE patients (12 left, 14 right) with a mean age of 10.7 years (range 0.9–18) were prospectively studied. Preoperative rsMRI was obtained in patients with concordant lateralizing structural MRI, EEG, and PET studies. Standard preprocessing techniques and seed-based rsMRI analyses were performed. Additionally, the latency in rsMRI signal between each 6 mm voxel sampled was examined, compared to the global mean signal, and projected onto standard atlas space for individuals and the cohort.

Results

All but one of the 26 patients improved seizure frequency postoperatively with a mean follow-up of 2.9 years (range 0–7.7), with 21 patients seizure-free. When grouped for epileptogenic laterality, the latency map qualitatively demonstrated that the right TLE patients had a relatively early signal pattern, whereas the left TLE patients had a relatively late signal pattern compared to the global mean signal in the right temporal lobe. Quantitatively, the two groups had significantly different signal latency clusters in the bilateral temporal lobes (p < 0.001).

Conclusion

There are functional MR signal latency changes in medical refractory pediatric TLE patients. Qualitatively, signal latency in the right temporal lobe precedes the mean signal in right TLE patients and is delayed in left TLE patients. With larger confirmatory studies, preoperative rsMRI latency analysis may offer an inexpensive, noninvasive adjunct modality to lateralize pediatric TLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gleissner U, Sassen R, Schramm J, Elger CE, Helmstaedter C (2005) Greater functional recovery after temporal lobe epilepsy surgery in children. BrainJ Neurol 128:2822–2829

    Article  CAS  Google Scholar 

  2. Mohamed A, Wyllie E, Ruggieri P, Kotagal P, Babb T, Hilbig A, Wylie C, Ying Z, Staugaitis S, Najm I, Bulacio J, Foldvary N, Luders H, Bingaman W (2001) Temporal lobe epilepsy due to hippocampal sclerosis in pediatric candidates for epilepsy surgery. Neurology 56:1643–1649

    Article  CAS  PubMed  Google Scholar 

  3. Smyth MD, Limbrick DD Jr, Ojemann JG, Zempel J, Robinson S, O'Brien DF, Saneto RP, Goyal M, Appleton RE, Mangano FT, Park TS (2007) Outcome following surgery for temporal lobe epilepsy with hippocampal involvement in preadolescent children: emphasis on mesial temporal sclerosis. J Neurosurg 106:205–210

    PubMed  Google Scholar 

  4. Camfield CS, Camfield PR, Gordon K, Wirrell E, Dooley JM (1996) Incidence of epilepsy in childhood and adolescence: a population-based study in Nova Scotia from 1977 to 1985. Epilepsia 37:19–23

    Article  CAS  PubMed  Google Scholar 

  5. Cross JH, Jayakar P, Nordli D, Delalande O, Duchowny M, Wieser HG, Guerrini R, Mathern GW, International League against Epilepsy SfPES, Commissions of N, Paediatrics (2006) Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia 47:952–959

    Article  PubMed  Google Scholar 

  6. Boshuisen K, van Schooneveld MM, Uiterwaal CS, Cross JH, Harrison S, Polster T, Daehn M, Djimjadi S, Yalnizoglu D, Turanli G, Sassen R, Hoppe C, Kuczaty S, Barba C, Kahane P, Schubert-Bast S, Reuner G, Bast T, Strobl K, Mayer H, de Saint-Martin A, Seegmuller C, Laurent A, Arzimanoglou A, Braun KP, TimeToStop cognitive outcome study group (2015) Intelligence quotient improves after antiepileptic drug withdrawal following pediatric epilepsy surgery. Ann Neurol 78:104–114

    Article  CAS  PubMed  Google Scholar 

  7. Sugano H, Arai H (2015) Epilepsy surgery for pediatric epilepsy: optimal timing of surgical intervention. Neurol Med Chir (Tokyo) 55:399–406

    Article  Google Scholar 

  8. Cataldi M, Avoli M, de Villers-Sidani E (2013) Resting state networks in temporal lobe epilepsy. Epilepsia 54:2048–2059

    Article  PubMed  PubMed Central  Google Scholar 

  9. Constable RT, Scheinost D, Finn ES, Shen X, Hampson M, Winstanley FS, Spencer DD, Papademetris X (2013) Potential use and challenges of functional connectivity mapping in intractable epilepsy. Front Neurol 4:39

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19

    PubMed  PubMed Central  Google Scholar 

  11. Kokkonen SM, Nikkinen J, Remes J, Kantola J, Starck T, Haapea M, Tuominen J, Tervonen O, Kiviniemi V (2009) Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI. Magn Reson Imaging 27:733–740

    Article  PubMed  Google Scholar 

  12. Liu H, Buckner RL, Talukdar T, Tanaka N, Madsen JR, Stufflebeam SM (2009) Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J Neurosurg 111:746–754

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hacker CD, Laumann TO, Szrama NP, Baldassarre A, Snyder AZ, Leuthardt EC, Corbetta M (2013) Resting state network estimation in individual subjects. NeuroImage 82:616–633

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shannon BJ, Raichle ME, Snyder AZ, Fair DA, Mills KL, Zhang D, Bache K, Calhoun VD, Nigg JT, Nagel BJ, Stevens AA, Kiehl KA (2011) Premotor functional connectivity predicts impulsivity in juvenile offenders. Proc Natl Acad Sci U S A 108:11241–11245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lustig C, Snyder AZ, Bhakta M, O'Brien KC, McAvoy M, Raichle ME, Morris JC, Buckner RL (2003) Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A 100:14504–14509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, Mintun MA, Wang S, Coalson RS, Raichle ME (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A 106:1942–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Snyder AZ, Raichle ME (2012) A brief history of the resting state: the Washington University perspective. NeuroImage 62:902–910

    Article  PubMed  PubMed Central  Google Scholar 

  19. Broicher SD, Frings L, Huppertz HJ, Grunwald T, Kurthen M, Kramer G, Jokeit H (2012) Alterations in functional connectivity of the amygdala in unilateral mesial temporal lobe epilepsy. J Neurol 259:2546–2554

    Article  PubMed  Google Scholar 

  20. Haneef Z, Lenartowicz A, Yeh HJ, Engel J Jr, Stern JM (2012) Effect of lateralized temporal lobe epilepsy on the default mode network. Epilepsy Behav 25:350–357

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, Luo C, Wang Z, Tan Q, Lu G, Chen H (2011) Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Hum Brain Mapp 32:883–895

    Article  PubMed  Google Scholar 

  22. Luo C, Qiu C, Guo Z, Fang J, Li Q, Lei X, Xia Y, Lai Y, Gong Q, Zhou D, Yao D (2011) Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study. PLoS One 7:e28196

    Article  PubMed  Google Scholar 

  23. Stufflebeam SM, Liu H, Sepulcre J, Tanaka N, Buckner RL, Madsen JR (2011) Localization of focal epileptic discharges using functional connectivity magnetic resonance imaging. J Neurosurg 114:1693–1697

    Article  PubMed  PubMed Central  Google Scholar 

  24. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD (2006) Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol 59:335–343

    Article  PubMed  Google Scholar 

  25. Luo C, Li Q, Lai Y, Xia Y, Qin Y, Liao W, Li S, Zhou D, Yao D, Gong Q (2011) Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study. Hum Brain Mapp 32:438–449

    Article  PubMed  Google Scholar 

  26. Pizoli CE, Shah MN, Snyder AZ, Shimony JS, Limbrick DD, Raichle ME, Schlaggar BL, Smyth MD (2011) Resting-state activity in development and maintenance of normal brain function. Proc Natl Acad Sci U S A 108:11638–11643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bettus G, Bartolomei F, Confort-Gouny S, Guedj E, Chauvel P, Cozzone PJ, Ranjeva JP, Guye M (2010) Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 81:1147–1154

    Article  PubMed  Google Scholar 

  28. Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, Cozzone PJ, Chauvel P, Ranjeva JP, Bartolomei F, Guye M (2009) Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp 30:1580–1591

    Article  PubMed  Google Scholar 

  29. James GA, Tripathi SP, Ojemann JG, Gross RE, Drane DL (2013) Diminished default mode network recruitment of the hippocampus and parahippocampus in temporal lobe epilepsy. J Neurosurg 119:288–300

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu DH, Lewin JS, Duerk JL (1997) Inadequacy of motion correction algorithms in functional MRI: role of susceptibility-induced artifacts. J Magn Reson Imaging 7:365–370

    Article  CAS  PubMed  Google Scholar 

  31. Mitra A, Snyder AZ, Hacker CD, Raichle ME (2014) Lag structure in resting state fMRI. J Neurophysiol 111:2374–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitra A, Snyder AZ, Constantino JN, Raichle ME (2015) The lag structure of intrinsic activity is focally altered in high functioning adults with autism. Cereb Cortex

  33. Amemiya S, Kunimatsu A, Saito N, Ohtomo K (2014) Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology 270:548–555

    Article  PubMed  Google Scholar 

  34. Lv Y, Margulies DS, Cameron Craddock R, Long X, Winter B, Gierhake D, Endres M, Villringer K, Fiebach J, Villringer A (2013) Identifying the perfusion deficit in acute stroke with resting-state functional magnetic resonance imaging. Ann Neurol 73:136–140

    Article  PubMed  Google Scholar 

  35. Xu Q, Zhang Z, Liao W, Xiang L, Yang F, Wang Z, Chen G, Tan Q, Jiao Q, Lu G (2014) Time-shift homotopic connectivity in mesial temporal lobe epilepsy. AJNR Am J Neuroradiol 35:1746–1752

    Article  CAS  PubMed  Google Scholar 

  36. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283

    Article  PubMed  PubMed Central  Google Scholar 

  37. Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ (2004) A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. NeuroImage 23:724–738

    Article  PubMed  Google Scholar 

  38. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative G (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54:313–327

    Article  PubMed  Google Scholar 

  39. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shannon BJ, Dosenbach RA, Su Y, Vlassenko AG, Larson-Prior LJ, Nolan TS, Snyder AZ, Raichle ME (2013) Morning-evening variation in human brain metabolism and memory circuits. J Neurophysiol 109:1444–1456

    Article  CAS  PubMed  Google Scholar 

  41. Freitag H, Tuxhorn I (2005) Cognitive function in preschool children after epilepsy surgery: rationale for early intervention. Epilepsia 46:561–567

    Article  PubMed  Google Scholar 

  42. Laufs H, Hamandi K, Salek-Haddadi A, Kleinschmidt AK, Duncan JS, Lemieux L (2007) Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum Brain Mapp 28:1023–1032

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang Z, Lu G, Zhong Y, Tan Q, Chen H, Liao W, Tian L, Li Z, Shi J, Liu Y (2010) fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp 31:1851–1861

    Article  PubMed  Google Scholar 

  44. Zhang Z, Liao W, Wang Z, Xu Q, Yang F, Mantini D, Jiao Q, Tian L, Liu Y, Lu G (2014) Epileptic discharges specifically affect intrinsic connectivity networks during absence seizures. J Neurol Sci 336:138–145

    Article  PubMed  Google Scholar 

  45. Arya R, Tenney JR, Horn PS, Greiner HM, Holland KD, Leach JL, Gelfand MJ, Rozhkov L, Fujiwara H, Rose DF, Franz DN, Mangano FT (2015) Long-term outcomes of resective epilepsy surgery after invasive presurgical evaluation in children with tuberous sclerosis complex and bilateral multiple lesions. J Neurosurg Pediatr 15:26–33

    Article  PubMed  Google Scholar 

  46. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33:279–296

    Article  PubMed  Google Scholar 

  47. Buckner RL, Vincent JL (2007) Unrest at rest: default activity and spontaneous network correlations. NeuroImage 37:1091–1096 discussion 1097-1099

    Article  PubMed  Google Scholar 

  48. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. NeuroImage 37:1083–1090 discussion 1097-1089

    Article  PubMed  Google Scholar 

  49. Radhakrishnan K, So EL, Silbert PL, Jack CR Jr, Cascino GD, Sharbrough FW, O'Brien PC (1998) Predictors of outcome of anterior temporal lobectomy for intractable epilepsy: a multivariate study. Neurology 51:465–471

    Article  CAS  PubMed  Google Scholar 

  50. Baumgartner C, Pataraia E, Lindinger G, Deecke L (2000) Neuromagnetic recordings in temporal lobe epilepsy. J Clin Neurophysiol 17:177–189

    Article  CAS  PubMed  Google Scholar 

  51. Ho SS, Berkovic SF, Berlangieri SU, Newton MR, Egan GF, Tochon-Danguy HJ, McKay WJ (1995) Comparison of ictal SPECT and interictal PET in the presurgical evaluation of temporal lobe epilepsy. Ann Neurol 37:738–745

    Article  CAS  PubMed  Google Scholar 

  52. Salanova V, Markand O, Worth R, Smith R, Wellman H, Hutchins G, Park H, Ghetti B, Azzarelli B (1998) FDG-PET and MRI in temporal lobe epilepsy: relationship to febrile seizures, hippocampal sclerosis and outcome. Acta Neurol Scand 97:146–153

    Article  CAS  PubMed  Google Scholar 

  53. Ioannidis JP, Trikalinos TA (2005) Early extreme contradictory estimates may appear in published research: the Proteus phenomenon in molecular genetics research and randomized trials. J Clin Epidemiol 58:543–549

    Article  PubMed  Google Scholar 

  54. Worsley KJ, Chen JI, Lerch J, Evans AC (2005) Comparing functional connectivity via thresholding correlations and singular value decomposition. Philos Trans R Soc Lond Ser B Biol Sci 360:913–920

    Article  Google Scholar 

  55. Osipowicz K, Sperling MR, Sharan AD, Tracy JI (2015) Functional MRI, resting state fMRI, and DTI for predicting verbal fluency outcome following resective surgery for temporal lobe epilepsy. J Neurosurg 1–9

  56. Spader HS, Ellermeier A, O'Muircheartaigh J, Dean DC 3rd, Dirks H, Boxerman JL, Cosgrove GR, Deoni SC (2013) Advances in myelin imaging with potential clinical application to pediatric imaging. Neurosurg Focus 34:E9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under Award Number L30 HD089125 (MNS) as well as U54 HD087011 to the Intellectual and Developmental Disabilities Research Center at Washington University (JSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish N. Shah.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all study participants.

Additional information

A portion of this work was accepted for oral presentation at the American Society of Pediatric Neurosurgeons Annual Meeting in February 2016.

Electronic supplementary material

Supplementary Figure 1

Autocorrelation plot for preprocessed rsMRI data in the temporal lobes. The calculated mean autocorrelation coefficients of 3 time lags (1 TR, 2 TR, 3 TR) for averaged time series (preprocessed rsMRI data) extracted from symmetric regions of interest in the left and right temporal lobes (LTL and RTL) in both patient groups (LTLE and RTLE) show the trend that as lag increases, the autocorrelation coefficient reduces quickly to insignificant. This indicates that the effect of autocorrelation is negligible in the rsMRI temporal latency analysis. (GIF 80 kb)

High resolution image (TIFF 16815 kb)

Supplementary Figure 2

Standard deviation maps. A. Mean standard deviation map for each patient with LTLE; B. Mean standard deviation map for each patient with RTLE. The standard deviation maps show that the voxel-wise mean standard deviation does not correlate with the temporal latency maps in these patients. (GIF 200 kb)

High resolution image (TIFF 7347 kb)

Supplementary Table 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M.N., Mitra, A., Goyal, M.S. et al. Resting state signal latency predicts laterality in pediatric medically refractory temporal lobe epilepsy. Childs Nerv Syst 34, 901–910 (2018). https://doi.org/10.1007/s00381-018-3770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-018-3770-5

Keywords

Navigation