Skip to main content
Log in

First surface-based estimation of the aerosol indirect effect over a site in southeastern China

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The deployment of the U.S. Atmospheric Radiation Measurement mobile facility in Shouxian from May to December 2008 amassed the most comprehensive set of measurements of atmospheric, surface, aerosol, and cloud variables in China. This deployment provided a unique opportunity to investigate the aerosol–cloud interactions, which are most challenging and, to date, have not been examined to any great degree in China. The relationship between cloud droplet effective radius (CER) and aerosol index (AI) is very weak in summer because the cloud droplet growth is least affected by the competition for water vapor. Mean cloud liquid water path (LWP) and cloud optical depth (COD) significantly increase with increasing AI in fall. The sensitivities of CER and LWP to aerosol loading increases are not significantly different under different air mass conditions. There is a significant correlation between the changes in hourly mean AI and the changes in hourly mean CER, LWP, and COD. The aerosol first indirect effect (FIE) is estimated in terms of relative changes in both CER (FIECER) and COD (FIECOD) with changes in AI for different seasons and air masses. FIECOD and FIECER are similar in magnitude and close to the typical FIE value of ∼ 0.23, and do not change much between summer and fall or between the two different air mass conditions. Similar analyses were done using spaceborne Moderate Resolution Imaging Spectroradiometer data. The satellite-derived FIE is contrary to the FIE estimated from surface retrievals and may have large uncertainties due to some inherent limitations.

摘 要

2008 年 5 月至 12 月, 美国大气辐射观测移动设施在我国寿县地区进行了连续观测, 并获得了该地区大气, 地面, 气溶胶以及云等大量的综合观测资料. 该观测为地基研究我国气溶胶和云的相互作用提供了极为难得的机会. 气溶胶与云的相互作用是气候变化研究中最具有挑战性的科学问题之一, 而到目前为止, 我国几乎没有地基观测研究. 由于云滴粒子增长受到水汽竞争的影响, 云滴有效半径与气溶胶指数之间的关系在夏季较弱. 秋季, 云平均的液态水路径以及云光学厚度随气溶胶指数的增加显著增加. 云滴有效半径和云液态水路径对气溶胶增加的敏感性在不同大气团影响下并没有显著的差异. 平均的气溶胶指数的小时变化与平均的云滴有效半径, 液态水路径和光学厚度存在显著的相关性. 利用云滴有效半径和云光学厚度对气溶胶指数的相对变化, 分别评估了不同季节以及不同气团影响下的气溶胶第一间接效应的量级. 利用两个云的参数计算的气溶胶第一间接效应的量级相似, 接近于典型的第一间接效应的量级 (∼0.23), 并且在夏季与冬季以及不同的两个气团情况下并不存在明显的变化. 与地面观测值得到的第一间接效应相比, 由于某些固有的限制, 利用中分辨率成像光谱仪 (MODIS) 得到的第一间接效应存在着很大的不缺定性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bréon, F.-M., D. Tanré, and S. Generosol, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295, 834–838, https://doi.org/10.1126/science.1066434.

    Google Scholar 

  • Bulgin, C. E., and Coauthors, 2008: Regional and seasonal variations of the Twomey indirect effect as observed by the ATSR-2 satellite instrument. Geophys. Res. Lett., 35, L02811, https://doi.org/10.1029/2007GL031394.

    Google Scholar 

  • Chiu, J. C., C.-H. Huang, A. Marshak, I. Slutsker, D. M. Giles, B. N. Holben, Y. Knyazikhin, and W. J. Wiscombe, 2010: Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations. J. Geophys. Res., 115, D14202, https://doi.org/10.1029/2009JD013121.

    Google Scholar 

  • Chiu, J. C., and Coauthors, 2012: Cloud droplet size and liquid water path retrievals from zenith radiance measurements: Examples from the Atmospheric Radiation MEASUREMENT Program and the Aerosol Robotic Network. Atmos. Chem. Phys., 12(21), 10 313–10 329, https://doi.org/10.5194/acp-12-10313-2012.

    Google Scholar 

  • Costantino, L., and F.-M. Bréon, 2013: Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations. Atmos. Chem. Phys., 13(1), 69–88, https://doi.org/10.5194/acp-13-69-2013.

    Google Scholar 

  • Dong, X. Q., P. Minnis, B. K. Xi, S. Sun-Mack, and Y. Chen, 2008: Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site. J. Geophys. Res., 113, D03204, https://doi.org/10.1029/2007JD008438.

    Google Scholar 

  • Fan, J. W., L. R. Leung, Z. Q. Li, H. Morrison, H. B. Chen, Y. Q. Zhou, Y. Qian, and Y. Wang, 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, https://doi.org/10.1029/2011JD016537.

    Google Scholar 

  • Fan, X. H., H. B. Chen, X. G. Xia, Z. Q. Li, and M. Cribb, 2010: Aerosol optical properties from the Atmospheric Radiation Measurement Mobile Facility at Shouxian, China. J. Geophys. Res., 115(D7), D00K33, https://doi.org/10.1029/2010JD014650.

    Google Scholar 

  • Feingold, G., W. L. Eberhard, D. E. Veron, and M. Previdi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30(6), https://doi.org/10.1029/2002GL016633.

    Google Scholar 

  • Feingold, G., R. Furrer, P. Pilewskie, L. A. Remer, Q. L. Min, and H. Jonsson, 2006: Aerosol indirect effect studies at Southern Great Plains during the May 2003 Intensive Operations Period. J. Geophys. Res., 111, D05S14, https://doi.org/10.1029/2004JD005648.

    Google Scholar 

  • Garrett, T. J., C. Zhao, X. Dong, G. G. Mace, and P. V. Hobbs, 2004: Effects of varying aerosol regimes on low-level Arctic stratus. Geophys. Res. Lett., 31, L17105, https://doi.org/10.1029/2004GL019928.

    Google Scholar 

  • Harikishan, G., B. Padmakumari, R. S. Maheskumar, G. Pandithurai, and Q. L. Min, 2016: Aerosol indirect effects from ground-based retrievals over the rain shadow region in Indian subcontinent. J. Geophys. Res., 121, 2369–2382, https://doi.org/10.1002/2015JD024577.

    Google Scholar 

  • Heintzenberg, J., and Coauthors, 2006: Intercomparisons and aerosol calibrations of 12 commercial integrating nephelometers of three manufacturers. J. Atmos. Oceanic Technol., 23, 902–914, https://doi.org/10.1175/jtech1892.1.

    Google Scholar 

  • Holben, B. N., and Coauthors, 1998: AERONET-a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5.

    Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution ofWorking Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, et al., Eds, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535pp, https://doi.org/10.1017/CBO9781107415324.

    Google Scholar 

  • Jeong, M.-J., and Z. Q. Li, 2010: Separating real and apparent effects of cloud, humidity, and dynamics on aerosol optical thickness near cloud edges. J. Geophys. Res., 115, D00K32, https://doi.org/10.1029/2009JD013547.

    Google Scholar 

  • Kim, B.-G., S. E. Schwartz, M. A. Miller, and Q. L. Min, 2003: Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol. J. Geophys. Res., 108(D23), 4740, https://doi.org/10.1029/2003JD003721.

    Google Scholar 

  • Kim, B.-G., M. A. Miller, S. E. Schwartz, Y. G. Liu, and Q. L. Min, 2008: The role of adiabaticity in the aerosol first indirect effect. J. Geophys. Res., 113, D05210, https://doi.org/10.1029/2007JD008961.

    Google Scholar 

  • Lee, K. H., Z. Q. Li, M. C. Cribb, J. J. Liu, L. Wang, Y. F. Zheng, X. G. Xia, H. B. Chen, and B. Li, 2010: Aerosol optical depth measurements in eastern China and a new calibration method. J. Geophys. Res., 115, D00K11, https://doi.org/10.1029/2009JD012812.

    Google Scholar 

  • Lee, S. S., J. E. Penner, and S. M. Saleeby, 2009: Aerosol effects on liquid-water path of thin stratocumulus clouds. J. Geophys. Res., 114, D07204, https://doi.org/10.1029/2008JD010513.

    Google Scholar 

  • Li, Z., and Coauthors, 2009: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Annales Geophysicae, 27, 2755–2770, https://doi.org/10.5194/angeo-27-2755-2009.

    Google Scholar 

  • Li, Z. Q., and Coauthors, 2007: Preface to special section on East Asian studies of tropospheric aerosols: An international regional experiment (EAST-AIRE). J. Geophys. Res., 112, D22S00, https://doi.org/10.1029/2007JD008853.

    Google Scholar 

  • Li, Z. Q., and Coauthors, 2011: East Asian studies of tropospheric aerosols and their impact on regional climate (EAST-AIRC): An overview. J. Geophys. Res., 116, D00K34, https://doi.org/10.1029/2010JD015257.

    Google Scholar 

  • Liljegren J. C., and B. M. Lesht, 2004: Preliminary results with the twelve-channel microwave radiometer profiler at the North Slope of Alaska Climate Research Facility. Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico.

    Google Scholar 

  • Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Q. Dong, 2001: A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14 485–14 500, https://doi.org/10.1029/2000JD900817.

    Google Scholar 

  • Liu, G. S., H. F. Shao, J. A. Coakley Jr., J. A. Curry, J. A. Haggerty, and M. A. Tschudi, 2003: Retrieval of cloud droplet size from visible and microwave radiometric measurements during INDOEX: Implication to aerosols’ indirect radiative effect. J. Geophys. Res., 108(D1), 4006, https://doi.org/10.1029/2001JD001395.

    Google Scholar 

  • Liu, J. J., and Z. Q. Li, 2014: Estimation of cloud condensation nuclei concentration from aerosol optical quantities: Influential factors and uncertainties. Atmos. Chem. Phys., 14(1), 471–483, https://doi.org/10.5194/acp-14-471-2014.

    Google Scholar 

  • Liu, J. J., Y. F. Zheng, Z. Q. Li, C. Flynn, E. J. Welton, and M. Cribb, 2011a: Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors. Atmos. Environ., 45(35), 6469–6480, https://doi.org/10.1016/j.atmosenv.2011.04.031.

    Google Scholar 

  • Liu, J. J., Y. F. Zheng, Z. Q. Li, and M. Cribb, 2011b: Analysis of cloud condensation nuclei properties at a polluted site in southeastern China during the AMF-China Campaign. J. Geophys. Res., 116, D00K35, https://doi.org/10.1029/2011JD016395.

    Google Scholar 

  • Liu, J. J., Y. F. Zheng, Z. Q. Li, C. Flynn, and M. Cribb, 2012: Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China. J. Geophys. Res., 117, D00K38, https://doi.org/10.1029/2011JD016490.

    Google Scholar 

  • Liu, J. J., Z. Q. Li, Y. F. Zheng, J. C. Chiu, F. S. Zhao, M. Cadeddu, F. Z. Weng, and M. Cribb, 2013: Cloud optical and microphysical properties derived from ground-based and satellite sensors over a site in the Yangtze Delta region. J. Geophys. Res., 118, 9141–9152, https://doi.org/10.1002/jgrd.50648.

    Google Scholar 

  • Liu, J. J., Z. Q. Li, Y. F. Zheng, and M. Cribb, 2015: Cloudbase distribution and cirrus properties based on micropulse lidar measurements at a site in southeastern China. Adv. Atmos. Sci., 32(7), 991–1004, https://doi.org/10.1007/s00376-014-4176-2.

    Google Scholar 

  • Liu, J. J., Z. Q. Li, and M. Cribb, 2016: Response of marine boundary layer cloud properties to aerosol perturbations associated with meteorological conditions from the 19-Month AMF-Azores campaign. J. Atmos. Sci., 73(11), 4253–4268, https://doi.org/10.1175/JAS-D-15-0364.1.

    Google Scholar 

  • Ma, J. Z., Y. Chen, W. Wang, P. Yan, H. J. Liu, S. Y. Yang, Z. J. Hu, and J. Lelieveld, 2010: Strong air pollution causes widespread haze-clouds over China. J. Geophys. Res., 115, D18204, https://doi.org/10.1029/2009JD013065.

    Google Scholar 

  • Marshak, A., Y. Knyazikhin, K. D. Evans, and W. J. Wiscombe, 2004: The “RED versus NIR” plane to retrieve brokencloud optical depth from ground-based measurements. J. Atmos. Sci., 61, 1911–1925, https://doi.org/10.1175/1520-0469(2004)061<1911:TRVNPT>2.0.CO;2.

    Google Scholar 

  • McComiskey, A., and G. Feingold, 2008: Quantifying error in the radiative forcing of the first aerosol indirect effect. Geophys. Res. Lett., 35, L02810, https://doi.org/10.1029/2007GL032667.

    Google Scholar 

  • McComiskey, A., and G. Feingold, 2012: The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys., 12(2), 1031–1049, https://doi.org/10.5194/acp-12-1031-2012.

    Google Scholar 

  • McComiskey, A., G. Feingold, A. S. Frisch, D. D. Turner, M. A. Miller, J. C. Chiu, Q. L. Min, and J. A. Ogren, 2009: An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res., 114, D09203, https://doi.org/10.1029/2008JD011006.

    Google Scholar 

  • Menon, S., A. D. Del Genio, Y. Kaufman, R. Bennartz, D. Koch, N. Loeb, and D. Orlikowski, 2008: Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect. J. Geophys. Res., 113, D14S22, https://doi.org/10.1029/2007JD009442.

    Google Scholar 

  • Min, Q.-L., M. Duan, and R. Marchand, 2003: Validation of surface retrieved cloud optical properties with in situ measurements at the Atmospheric Radiation Measurement Program (ARM) South Great Plains site. J. Geophys. Res., 108(D17), https://doi.org/10.1029/2003jd003385.

    Google Scholar 

  • Myhre, G., and Coauthors, 2007: Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models. Atmos. Chem. Phys., 7, 3081–3101, https://doi.org/10.5194/acp-7-3081-2007.

    Google Scholar 

  • Nakajima, T., A. Higurashi, K. Kawamoto, and J. E. Penner, 2001: A possible correlation between satellite derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28(7), 1171–1174, https://doi.org/10.1029/2000GL012186.

    Google Scholar 

  • Pandithurai, G., T. Takamura, J. Yamaguchi, K. Miyagi, T. Takano, Y. Ishizaka, S. Dipu, and A. Shimizu, 2009: Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region. Geophys. Res. Lett., 36, L13805, https://doi.org/10.1029/2009GL038451.

    Google Scholar 

  • Quaas, J., and Coauthors, 2009: Aerosol indirect effects-General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 8697–8717, https://doi.org/10.5194/acp-9-8697-2009.

    Google Scholar 

  • Rolph, G. D., 2016: Real-time Environmental Applications and Display System (READY). NOAA Air Resources Laboratory, College Park, MD.

    Google Scholar 

  • Rosenfeld, D., and G. Feingold, 2003: Explanation of the discrepancies among satellite observations of the aerosol indirect effects. Geophys. Res. Lett., 30(14), https://doi.org/10.1029/2003GL017684.

    Google Scholar 

  • Stein, A. F., R. Draxle, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    Google Scholar 

  • Tang, J. P., P. C. Wang, L. J. Mickley, X. G. Xia, H. Liao, X. Yue, L. Sun, and J. R. Xia, 2014: Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over Eastern China from satellite data. Atmos. Environ., 84, 244–253, https://doi.org/10.1016/j.atmosenv.2013.08.024.

    Google Scholar 

  • Twohy, C. H., M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell, and F. Burnet, 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact. J. Geophys. Res., 110, D08203, https://doi.org/10.1029/2004JD005116.

    Google Scholar 

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34(7), 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    Google Scholar 

  • V´arnai, T., and A. Marshak, 2014: Near-cloud aerosol properties from the 1-km resolution MODIS ocean product. J. Geophys. Res., 119, 1546–1554, https://doi.org/10.1002/2013JD020633.

    Google Scholar 

  • Wang, F., J. P. Guo, Y. R. Wu, X. Y. Zhang, M. J. Deng, X. W. Li, J. H. Zhang, and J. Zhao, 2014: Satellite observed aerosolinduced variability in warm cloud properties under different meteorological conditions over eastern China. Atmos. Environ., 84, 122–132, https://doi.org/10.1016/j.atmosenv.2013.11.018.

    Google Scholar 

  • Wang, M. H., and Coauthors, 2012: Constraining cloud lifetime effects of aerosols using A-Train satellite observations. Geophys. Res. Lett., 39, L15709, https://doi.org/10.1029/2012GL052204.

    Google Scholar 

  • Wang, Y., J. W. Fan, R. Y. Zhang, L. R. Leung, and C. Franklin, 2013: Improving bulk microphysics parameterizations in simulations of aerosol effects. J. Geophys. Res., 118, 5361–5379, https://doi.org/10.1002/jgrd.50432.

    Google Scholar 

  • Wang, Z. E., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 1665–1682, https://doi.org/10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    Google Scholar 

  • Xia, X. G., Z. Q. Li, B. Holben, P. C. Wang, T. Eck, H. B. Chen, M. Cribb, and Y. X. Zhao, 2007: Aerosol optical properties and radiative effects in the Yangtze Delta region of China. J. Geophys. Res., 112, D22S12, https://doi.org/10.1029/2007JD008859.

    Google Scholar 

  • Xu, J., M. H. Bergin, X. Yu, G. Liu, J. Zhao, C. M. Carrico, and K. Baumann, 2002: Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China. Atmos. Environ., 36(2), 161–173, https://doi.org/10.1016/S1352-2310(01)00455-1.

    Google Scholar 

  • Yuan, T. L., Z. Q. Li, R. Y. Zhang, and J. W. Fan, 2008: Increase of cloud droplet size with aerosol optical depth: An observation and modeling study. J. Geophys. Res., 113, D04201, https://doi.org/10.1029/2007JD008632.

    Google Scholar 

  • Zhang, S. P., and Coauthors, 2016: On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmos. Chem. Phys., 16(5), 2765–2783, https://doi.org/10.5194/acp-16-2765-2016.

    Google Scholar 

  • Zhao, C. F., S. A. Klein, S. C. Xie, X. H. Liu, J. S. Boyle, and Y. Y. Zhang, 2012: Aerosol first indirect effects on nonprecipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites. Geophys. Res. Lett., 39, L08806, https://doi.org/10.1029/2012GL051213.

    Google Scholar 

Download references

Acknowledgements

Data were obtained from the ARM Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. The reanalysis data were obtained from the ECMWF model runs for ARM analysis provided by the ECMWF. M. Cribb helped edit the manuscript. The study was supported by the National Basic Research “973” Program of China (Grant No. 2013CB955804), a Natural Science Foundation of China research project (Grant No. 91544217), and the U.S. National Science Foundation (Grant No. AGS1534670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, Z. First surface-based estimation of the aerosol indirect effect over a site in southeastern China. Adv. Atmos. Sci. 35, 169–181 (2018). https://doi.org/10.1007/s00376-017-7106-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7106-2

Keywords

关键词

Navigation