Skip to main content
Log in

Barotropic process contributing to the formation and growth of tropical cyclone Nargis

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study reveals the barotropic dynamics associated with the formation and growth of tropical cyclone Nargis in 2008, during its formation stage. Strong equatorial westerlies occurred over the southern Bay of Bengal in association with the arrival of an intraseasonal westerly event during the period 22–24 April 2008. The westerlies, together with strong tropical-subtropical easterlies, constituted a large-scale horizontal shear flow, creating cyclonic vorticity and thereby promoting the incipient disturbance that eventually evolved into Nargis. This basic zonal flow in the lower troposphere was barotropically unstable, with the amplified disturbance gaining more kinetic energy from the easterly jet than from the westerly jet during 25–26 April. This finding suggests that more attention should be paid to the unstable easterly jet when monitoring and predicting the development of tropical cyclones. Energetics analyses reveal that barotropic energy conversion by the meridional gradient of the basic zonal flow was indeed an important energy source for the growth of Nargis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, G., and R. Huang, 2008: Influence of monsoon over the warm pool on interannual variation on tropical cyclone activity over the western North Pacific. Adv. Atmos. Sci., 25, 319–328, doi: 10.1007/s00376-008-0319-7.

    Article  Google Scholar 

  • Eliassen, A., 1983: The Charney-Stern theorem on barotropic-baroclinic instability. Pure Appl. Geophys., 121, 261–285.

    Article  Google Scholar 

  • Ferreira, R. N., and W. H. Schubert, 1996: Dynamical aspects of twin tropical cyclones associated with the Madden-Julian oscillation. J. Atmos. Sci., 53, 929–945.

    Article  Google Scholar 

  • Ferreira, R. N., and W. H. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 261–285.

    Article  Google Scholar 

  • George, L., and S. K. Mishra, 1993: An observational study on the energetics of the onset monsoon vortex, 1979. Quart. J. Roy. Meteor. Soc., 119, 755–778.

    Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

    Article  Google Scholar 

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.

    Article  Google Scholar 

  • Gray, W. M., 1975: Tropical cyclone genesis. Department of Atmospheric Science Paper No. 234, Colorado State University, Fort Collins, CO, 121pp.

    Google Scholar 

  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 3380–3403.

    Article  Google Scholar 

  • Harr, P. A., and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 1225–1246.

    Article  Google Scholar 

  • Holland, G. J., 1993: The Global Guide to Tropical Cyclone Forecasting. WMO/TD-560, World Meteorological Organization, Geneva, 342pp.

    Google Scholar 

  • Kikuchi, K., B. Wang, and H. Fudeyasu, 2009: Genesis of tropical cyclone Nargis revealed by multiple satellite observations. Geophys. Res. Lett., 36, L06811, doi: 10.1029/2009GL037296.

    Article  Google Scholar 

  • Krishnamurti, T. N., P. Ardanuy, and Y. Ramanathan, R. Pasch, 1981: On the onset vortex of the summer monsoons. Mon. Wea. Rev., 109, 344–363.

    Article  Google Scholar 

  • Kuo, H. L., 1949: Dynamical instability of two-dimensional non-divergent flow in a barotropic atmosphere. J. Meteor., 6, 105–122.

    Article  Google Scholar 

  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401–411.

    Google Scholar 

  • Lindzen, R. S., and S. Nigam, 1987: On the role of the sea surface temperature gradients in forcing low level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436.

    Article  Google Scholar 

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev., 122, 814–837.

    Article  Google Scholar 

  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation, Part I: Observations. J. Atmos. Sci., 58, 2545–2558.

    Article  Google Scholar 

  • Mao, J., and G. Wu, 2010: Intraseasonal modulation of tropical cyclogenesis in the western North Pacific: A case study. Theor. Appl. Climatol., 100, 397–411.

    Article  Google Scholar 

  • McPhaden, M. J., and Coauthors, 2009: Oceanatmosphere interactions during cyclone Nargis. EOS, Transactions, American Geophysical Union, 90, 53–60.

    Article  Google Scholar 

  • Mishra, S. K., M. D. Patwardhan, and L. George, 1985: A primitive equation barotropic instability study of the monsoon onset vortex, 1979. Quart. J. Roy. Meteor. Soc., 111, 427–444.

    Article  Google Scholar 

  • Nitta, T., and K. Masuda, 1981: Observational study of a monsoon depression developed over the Bay of Bengal during summer MONEX. J. Meteor. Soc. Japan, 59, 672–682.

    Google Scholar 

  • Nitta, T., and M. Yanai, 1969: A note on the barotropic instability of the tropical easterly current. J. Meteor. Soc. Japan., 47, 127–130.

    Google Scholar 

  • Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334–343.

    Article  Google Scholar 

  • Ross, R. S., 1991: Energetics of African wave disturbances derived from the FSU global spectral model. Meteor. Atmos. Phys., 45, 139–158.

    Article  Google Scholar 

  • Ross, R. S., and T. N. Krishnamurti, 2008: barotropic energy conversion as a predictor of development for NAMMA African easterly waves. Proc. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 7–10.

    Google Scholar 

  • Shenoi, S. S. C., D. Shankar, and S. R. Shetye, 1999: On the sea surface temperature high in the Lakshad-weep Sea before the onset of the southwest monsoon. J. Geophys. Res., 104, 15703–15712.

    Article  Google Scholar 

  • Subrahmanyam, D., M. K. Tandon, L. George, and S. K. Mishra, 1981: Role of barotropic mechanism in the development of a monsoon depression: A MONEX study. Pure Appl. Geophys., 119, 901–912.

    Article  Google Scholar 

  • Tomas, R., R. Holton, and P. J. Webster, 1999: The influence of cross-equatorial pressure gradients on the location of near-equator convection. Quar. J. Roy. Meteor. Soc., 125, 1107–127.

    Google Scholar 

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction, Mon. Wea. Rev., 132, 1917–1932.

    Article  Google Scholar 

  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, Department of Commerce, Washington DC.

    Google Scholar 

  • Zhou, W., and J. C. L. Chan, 2005: Intraseasonal oscillations and the South China Sea summer monsoon onset. Int. J. C1imatol., 25, 1585–1609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangyu Mao  (毛江玉).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, J., Wu, G. Barotropic process contributing to the formation and growth of tropical cyclone Nargis. Adv. Atmos. Sci. 28, 483–491 (2011). https://doi.org/10.1007/s00376-010-9190-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-9190-4

Key words

Navigation