Skip to main content
Log in

Changes of frequency of summer precipitation extremes over the Yangtze River in association with large-scale oceanic-atmospheric conditions

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Changes of the frequency of precipitation extremes (the number of days with daily precipitation exceeding the 90th percentile of a daily climatology, referred to as R90N) in summer (June–August) over the mid-lower reaches of the Yangtze River are analyzed based on daily observations during 1961–2007. The first singular value decomposition (SVD) mode of R90N is linked to an ENSO-like mode of the sea surface temperature anomalies (SSTA) in the previous winter. Responses of different grades of precipitation events to the climatic mode are compared. It is notable that the frequency of summer precipitation extremes is significantly related with the SSTA in the Pacific, while those of light and moderate precipitation are not. It is suggested that the previously well-recognized impact of ENSO on summer rainfall along the Yangtze River is essentially due to a response in summer precipitation extremes in the region, in association with the East Asia-Pacific (EAP) teleconnection pattern. A negative relationship is found between the East Asian Summer Monsoon (EASM) and precipitation extremes over the mid-lower reaches of the Yangtze River. In contrast, light rainfall processes are independent from the SST and EASM variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481–1484.

    Article  Google Scholar 

  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 2881–2893.

    Article  Google Scholar 

  • Chang, C. P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 4310–4325.

    Article  Google Scholar 

  • Fu, J. L., W. H. Qian, X. Lin, and D. L. Chen, 2008: Trends in graded precipitation in China from 1961 to 2000. Adv. Atmos. Sci., 25(2), 267–278, doi: 10.1007/s00376-008-0267-2.

    Article  Google Scholar 

  • Gershunov, A., and T. P. Barnett, 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. J. Climate, 11, 1575–1586.

    Article  Google Scholar 

  • Gershunov, A., and D. R. Cayan, 2003: Heavy daily precipitation frequency over the contiguous United States: Sources of climatic variability and seasonal predictability. J. Climate, 16, 2752–2765.

    Article  Google Scholar 

  • Gong, D. Y., and C. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29(10), 1436, doi: 10.1029/2001GL014523.

    Article  Google Scholar 

  • Gong, D. Y., and C. Ho, 2003: Arctic oscillation signals in the east Asian summer monsoon. J. Geophys. Res., 108(D2), 4066, doi: 10.1029/2002JD002193.

    Article  Google Scholar 

  • Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. Xavier, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 1442–1445.

    Article  Google Scholar 

  • Grimm, A. M., and R. G. Tedeschi, 2009: ENSO and extreme rainfall events in South America. J. Climate, 22, 1589–1608.

    Article  Google Scholar 

  • Groisman, P. Y., and Coauthors, 1999: Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42, 243–283.

    Article  Google Scholar 

  • Haylock, M. R., and C. M. Goodess, 2004: Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. International Journal of Climatology, 24, 759–776.

    Article  Google Scholar 

  • Huang, R. H., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21–32.

    Article  Google Scholar 

  • Huang, R. H., and F. Sun, 1992: Impacts of the tropical western Pacific on the east Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243–256.

    Google Scholar 

  • Huang, G., and Z. Yan, 1999: The East Asian Summer Monsoon circulation anomaly index and its interannual variations, Chinese Science Bulletin, 44(4), 421–424. (in Chinese)

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21(3), 289–302.

    Article  Google Scholar 

  • Li, J., and Q. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett., 29(8), 1274, doi: 10.1029/2001GL013874.

    Article  Google Scholar 

  • Liu, B. H., M. Xu, M. Henderson, and Y. Qi, 2005: Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res., 110, D08103, doi: 10.1029/2004JD004864.

    Article  Google Scholar 

  • Moberg, A., and Coauthors, 2006: Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J. Geophys. Res., 111, D22106, doi: 10.1029/2006JD007103.

    Article  Google Scholar 

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan., 65, 373–390.

    Google Scholar 

  • Qian, W. H., J. Fu, and Z. Yan, 2007: Decrease of light rain events in summer associated with a warming environment in China during 1961–2005. Geophys. Res. Lett., 34, L11705, doi: 10.1029/2007GL029631.

    Article  Google Scholar 

  • Qian, W. H., J. Zhu, Y. Wang, and J. Fu, 2009a: Regional relationship between the Jiang-Huai Meiyu and the equatorial surface-subsurface temperature anomalies. Chinese Sci. Bull., 54, 113–119. (in Chinese)

    Article  Google Scholar 

  • Qian, Y., D. Gong, J. Fan, L. R. Leung, R. Bennartz, D. Chen, and W. Wang, 2009b: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114, D00K02, doi: 10.1029/2008JD011575.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561–576.

    Article  Google Scholar 

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536.

    Article  Google Scholar 

  • Wang, X. L., and V. R. Swail, 2001: Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Cli mate, 14, 2204–2221.

    Google Scholar 

  • Wang, Y., and L. Zhou, 2005: Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett., 32, L09707, doi: 10.1029/2005GL022574.

    Article  Google Scholar 

  • Wang, Y., and Z. Yan, 2009: Trends in seasonal precipitation over China during 1961–2007. Atmos. Oceanic Sci. Lett., 2, 165–171.

    Google Scholar 

  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon-ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 3266–3279.

    Article  Google Scholar 

  • Wu, R., and B. P. Kirtman, 2007: Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Climate, 20, 1285–1304.

    Article  Google Scholar 

  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 3742–3758.

    Article  Google Scholar 

  • Yan, Z., S. Bate, R. Chandler, V. Isham, and H. Wheater, 2002: An analysis of daily maximum windspeed in northwestern Europe using Generalised Linear Modelling. J. Climate, 15(15), 2073–2088.

    Article  Google Scholar 

  • Yan, Z., and C. Yang, 2000: Geographical patterns of extreme climate changes in China during 1951–1997. Climatic and Environmental Research, 5(3), 267–272. (in Chinese)

    Google Scholar 

  • Yao, C., W. Qian, S. Yang, and Z. Lin, 2009: Regional features of precipitation over Asia and summer extreme precipitation over Southeast Asia and their associations with atmospheric-oceanic conditions. Meteor. Atmos. Phys., 106(1), 57–73.

    Article  Google Scholar 

  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 1096–1108.

    Article  Google Scholar 

  • Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229–241.

    Article  Google Scholar 

  • Zhang, X., W. D. Hogg, and É. Mekis, 2001: Spatial and temporal characteristics of heavy precipitation events over Canada. J. Climate, 14, 1923–1936.

    Article  Google Scholar 

  • Zhou, T., and R. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110(D8), D08104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Yan  (严中伟).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Yan, Z. Changes of frequency of summer precipitation extremes over the Yangtze River in association with large-scale oceanic-atmospheric conditions. Adv. Atmos. Sci. 28, 1118–1128 (2011). https://doi.org/10.1007/s00376-010-0128-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-0128-7

Key words

Navigation