Skip to main content
Log in

Influences of freshwater from major rivers on global ocean circulation and temperatures in the MIT ocean general circulation model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Responses of global ocean circulation and temperature to freshwater runoff from major rivers were studied by blocking regional runoff in the global ocean general circulation model (OGCM) developed at the Massachusetts Institute of Technology. Runoff into the tropical Atlantic, the western North Pacific, and the Bay of Bengal and northern Arabian Sea were selectively blocked. The blocking of river runoff first resulted in a salinity increase near the river mouths (2 practical salinity units). The saltier and, therefore, denser water was then transported to higher latitudes in the North Atlantic, North Pacific, and southern Indian Ocean by the mean currents. The subsequent density contrasts between northern and southern hemispheric oceans resulted in changes in major ocean currents. These anomalous ocean currents lead to significant temperature changes (1°C −2°C) by the resulting anomalous heat transports. The current and temperature anomalies created by the blocked river runoff propagated from one ocean basin to others via coastal and equatorial Kelvin waves. This study suggests that river runoff may be playing an important role in oceanic salinity, temperature, and circulations; and that partially or fully blocking major rivers to divert freshwater for societal purposes might significantly change ocean salinity, circulations, temperature, and atmospheric climate. Further studies are necessary to assess the role of river runoff in the coupled atmosphere-ocean system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, S. P., R. A. Weller, and R. B. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the western Pacific Warm Pool: Observations and 1D model results. J. Climate, 9, 3056–3085.

    Article  Google Scholar 

  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4, 79–89.

    Google Scholar 

  • Carton, J., 1991: Effect of seasonal surface freshwater flux on sea surface temperature in the tropical Atlantic Ocean. J. Geophys. Res., 96, 12593–12598.

    Article  Google Scholar 

  • Cessi, P., K. Bryan, and R. Zhang, 2003: Global seiching of thermocline waters between the Atlantic and the Indian-Pacific Ocean basins. Geophys. Res. Lett., 31, L04302, doi: 10.1029/2003GL019091.

    Article  Google Scholar 

  • Chou, S.-H., C.-L. Shie, R. M. Atlas, and J. Ardizzone, 1997: Air-sea fluxes retrieved from special sensor microwave imager data. J. Geophys. Res., 102, 12705–12726.

    Article  Google Scholar 

  • Clarke, A. J., and X. Liu, 1993: Observations and dynamics of semiannual and annual sea levels near the eastern equatorial Indian Ocean boundary. J. Phys. Oceanogr., 23, 386–399.

    Article  Google Scholar 

  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Atlas of Surface Marine Data 1994. NOAA Atlas NESDIS 6-8, U.S. Department of Commerce, NOAA, NESDIS, 83pp.

  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of Hydrometeorology, 3, 660–687.

    Article  Google Scholar 

  • Delworth, T. S., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 1481–1495.

    Article  Google Scholar 

  • Fedorov, A. V., R. C. Pacanowski, S. G. Philander, and G. Boccaletti, 2004: The effect of salinity on the wind-driven circulation and the thermal structure of the upper ocean. J. Phys. Oceanogr., 34, 1949–1966.

    Article  Google Scholar 

  • Feng, M., R. Lukas, P. Hacker, R. A. Weller, and S. P. Anderson, 2000: Upper-ocean heat and salt balances in the western equatorial Pacific in response to the intraseasonal oscillation during TOGA COARE. J. Climate, 13, 2409–2427.

    Article  Google Scholar 

  • Goldsbrough, G. R., 1933: Ocean currents produced by evaporation and precipitation. Proc. Roy. Soc. London, A141, 512–517.

    Article  Google Scholar 

  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the World Ocean with error estimates. J. Phys. Oceanogr., 13, 1093–1104.

    Article  Google Scholar 

  • Huang, B., and V. M. Mehta, 2004: The response of the Indo-Pacific Warm Pool to interannual variations in net atmospheric freshwater. J. Geophys. Res., 109, C06022, doi: 10.1029/2003JC002114.

    Article  Google Scholar 

  • Huang, B., and V. M. Mehta, 2005: The response of the Pacific and Atlantic Oceans to interannual variations in net atmospheric freshwater. J. Geophys. Res., 111, C08008, doi: 10.1029/2004JC002830.

    Article  Google Scholar 

  • Huang, B., V. M. Mehta, and N. Schneider, 2005: Oceanic response to idealized net atmospheric freshwater in the Pacific at the decadal timescale. J. Phys. Oceanogr., 35, 2467–2486.

    Article  Google Scholar 

  • Huang, R. X., 1993: Real freshwater flux as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation. J. Phys. Oceanogr., 23, 2428–2446.

    Article  Google Scholar 

  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Data Set. Bull. Amer. Meteor. Soc., 78, 5–20.

    Article  Google Scholar 

  • Johnson, H. L., and D. P. Marshall, 2004: Global teleconnections of meridional overturning circulation anomalies. J. Phys. Oceanogr., 34, 1702–1722.

    Article  Google Scholar 

  • Komuro, Y., and H. Hasumi, 2003: Effects of surface freshwater flux induced by sea ice transport on the global thermohaline circulation. J. Geophys. Res., 108(C2), 3047, doi: 10.1029/2002JC001476.

    Article  Google Scholar 

  • Large, W.G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.

    Article  Google Scholar 

  • Levitus, S., R. Burgett, and T. Boyer, 1994: Nutrients. Volume 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, U. S. Department of Commerce, Washington, D.C., 99pp.

    Google Scholar 

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 5753–5766.

    Article  Google Scholar 

  • Mohammad, R., and J. Nilsson, 2004: The role of diapycnal mixing for the equilibrium response of thermohaline circulation. Ocean Dynamics, 54, 54–65.

    Article  Google Scholar 

  • Miller, J. R., and G. L. Russell, 1992: The impact of global warming on river runoff. J. Geophys. Res., 97(D3), 2757–2764.

    Google Scholar 

  • Nilsson, J., G. Brostrom, and G. Walin, 2003: The thermohaline circulation and vertical mixing: Does weaker density stratification give stronger overturning? J. Phys. Oceanogr., 33, 2781–2795.

    Article  Google Scholar 

  • Nof, D., 2001: China’s development could lead to bottom water formation in the Japan/East Sea. Bull. Amer. Meteor. Soc., 82, 609–618.

    Article  Google Scholar 

  • Ottera, O. H., H. Drange, M. Bentsen, N. G. Kvamsto, and D. Jiang, 2003: The sensitivity of present-day Atlantic meridional overturning circulation to freshwater forcing, Geophys. Res. Lett., 30(17), 1898, doi: 10.1029/2003GL017578.

    Article  Google Scholar 

  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12, 799–811.

    Article  Google Scholar 

  • Schneider, N., and T. Barnett, 1995: The competition of freshwater and radiation in forcing the ocean during El Niño. J. Climate, 8, 980–992.

    Article  Google Scholar 

  • Seidov, D., and B. Haupt, 2003: Freshwater teleconnections and ocean thermohaline circulation. Geophys. Res. Lett., 30(6), 1329, doi: 10.1029/2002GL016564.

    Article  Google Scholar 

  • Stommel, H. M., 1984: The delicate interplay between wind-stress and buoyancy input in ocean circulation: The Goldsbrough variation. Tellus, 46A, 111–119.

    Google Scholar 

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484pp.

  • Weaver, A., J. Marotzke, P. E. Cummins, and E. S. Sarachik, 1993: Stability and variability of the thermohaline circulation. J. Phys. Oceanogr., 23, 39–60.

    Article  Google Scholar 

  • Weijer, W., W. P. E. De Ruijter, and H. A. Dijkstra, 2001: Stability of the Atlantic overturning circulation: Competition between Bering Strait freshwater flux and Agulhas heat and salt sources. J. Phys. Oceanogr., 31, 2385–2402.

    Article  Google Scholar 

  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34, 1232–1253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyin Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Mehta, V.M. Influences of freshwater from major rivers on global ocean circulation and temperatures in the MIT ocean general circulation model. Adv. Atmos. Sci. 27, 455–468 (2010). https://doi.org/10.1007/s00376-009-9022-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-9022-6

Key words

Navigation