Skip to main content

Advertisement

Log in

Extracellular DNA in soil and sediment: fate and ecological relevance

  • Review
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The review discusses origin, state and function of extracellular DNA in soils and sediments. Extracellular DNA can be released from prokaryotic and eukaryotic cells and can be protected against nuclease degradation by its adsorption on soil colloids and sand particles. Laboratory experiments have shown that DNA adsorbed by colloids and sand particles can be taken up by prokaryotic competent cells and be involved in natural transformation. Most of these experiments have been carried out under artificial conditions with pure DNA molecules and pure adsorbing matrices, but in soils and sediments, pure surface-reactive colloids are not present and DNA is present with other cellular components (wall debris, proteins, lipids, RNA, etc.) especially if released after cell lysis. The presence of inorganic compounds and organic molecules on both soil particles and DNA molecules can influence the DNA adsorption, degradation and transformation of competent cells. Extracellular DNA can be used as C, N and P sources by heterotrophic microorganisms and plays a significant role in bacterial biofilm formation. The nucleotides and nucleosides originated from the degradation of extracellular DNA can be re-assimilated by soil microorganisms. Extracellular DNA in soil can be leached and moved by water through the soil profile by capillarity. In this way, the extracellular DNA secreted by a cell can reach a competent bacterial cell far from the donor cell. Finally, the characterisation of extracellular DNA can integrate information on the composition of the microbial community of soil and sediments obtained by analysing intracellular DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aardema BW, Lorenz MG, Krumbein WE (1983) Protection of sediment adsorbed transforming DNA against enzymatic inactivation. Appl Environ Microbiol 46:417–420

    PubMed  CAS  Google Scholar 

  • Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P, Pietramellara G (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol Biochem 36:859–868. doi:10.1016/j.soilbio.2004.02.004

    CAS  Google Scholar 

  • Agnelli A, Ascher J, Corti G, Ceccherini MT, Pietramellara G, Nannipieri P (2007) Purification and isotopic signatures (δ13C, δ15N, Δ14C) of soil extracellular DNA. Biol Fertil Soils 44:353–361. doi:10.1007/s00374-007-0213-y

    CAS  Google Scholar 

  • Ahrenholtz I, Lorenz MG, Wackernagel W (1994) The extracellular nuclease of Serratia marcescens: studies on the activity in vitro and effect on transforming DNA in a groundwater aquifer microcosm. Arch Microbiol Res 161:1–8

    Google Scholar 

  • Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V (1997) pH dependent specific binding and combing of DNA. Biophys J 73:2064–2070

    PubMed  CAS  Google Scholar 

  • Allesen-Holm M, Barken Bundvik K, Yang L, Klausen M, Webb JS, Kejelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128. doi:10.1111/j.1365-2958.2005.05008.x

    PubMed  CAS  Google Scholar 

  • Alvarez AJ, Khanna M, Toranzos GA, Stotzky G (1998) Amplification of DNA bound on clay minerals. Mol Ecol 7:775–778. doi:10.1046/j.1365-294x.1998.00339.x

    CAS  Google Scholar 

  • Anderson BH, Magdoff FR (2005) Relative movement and soil fixation of soluble organic and inorganic phosphorus. J Environ Qual 34:2228–2233. doi:10.2134/jeq2005.0025

    PubMed  CAS  Google Scholar 

  • Andrushchenko VV, Kornilova SV, Kapinos LE, Hackl EV, Galkin VL, Grigoriev DN, Blagoi YP (1997) IR-spectroscopic studies of divalent metal ion effects on DNA hydration. J Mol Struct 408:225–228. doi:10.1016/S0022-2860(96)09672-X

    Google Scholar 

  • Arakawa H, Ahmad R, Naoui M, Tajmir-Riahi HA (2000) A comparative study of calf thymus DNA binding to Cr(III) and Cr(VI) ions. J Biol Chem 275:1050–1053. doi:10.1074/jbc.275.14.10150

    Google Scholar 

  • Bailiff DM, Karl DM (1991) Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region, 1986–87. Deep Sea Res 38:1077–1095

    CAS  Google Scholar 

  • Bakken L, Frostegård Å (2006) Nucleic acid extraction from soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Soil biology. vol. 8. Springer, Berlin, Germany, pp 49–73

    Google Scholar 

  • Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224. doi:10.1146/annurev.micro.51.1.203

    PubMed  CAS  Google Scholar 

  • Baur B, Hanselmann K, Schlimme W, Jenni B (1996) Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl Environ Microbiol 62:3673–3678

    PubMed  CAS  Google Scholar 

  • Benedik MJ, Strych U (1998) Serratia marcescens and its extracellular nuclease. FEMS Microbiol Lett 165:1–13. doi:10.1111/j.1574-6968.1998.tb13120.x

    PubMed  CAS  Google Scholar 

  • Beven K, Germann P (1982) Macropores and water flow in soils. Water Resour Res 18:1311–1325. doi:10.1029/WR018i005p01311

    Google Scholar 

  • Blagodatskaya EV, Blagodatskii SA, Anderson TH (2003) Quantitative isolation of microbial DNA from different types of soils of natural and agricultural ecosystems. Microbiol 72:744–749. doi:10.1023/B:MICI.0000008379.63620.7b

    CAS  Google Scholar 

  • Blum SAE, Lorenz MG, Wackernagel W (1997) Mechanism of retarded DNA degradation and prokaryotic origin of DNases in non sterile soils. Syst Appl Microbiol 20:513–521

    CAS  Google Scholar 

  • Bockelmann U, Janke A, Lawrence RJ, Szewzky U (2006) Bacterial extracellular DNA forming a defined network like structure. FEMS Microbiol Lett 262:31–38. doi:10.1111/j.1574-6968.2006.00361.x

    PubMed  Google Scholar 

  • Borneman J, Hartin JR (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66:4356–4360. doi:10.1128/AEM.66.10.4356-4360.2000

    PubMed  CAS  Google Scholar 

  • Bruinsma M, Kowalchuk G, van Veen J (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337

    Google Scholar 

  • Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001) Preferential flow paths: biological hot spots in soils. Soil Biol Biochem 33:729–738. doi:10.1016/S0038-0717(00)00218-2

    CAS  Google Scholar 

  • Cai P, Huang Q, Zhang X, Chen H (2006a) Adsorption of DNA on clay minerals and various colloidal particles from an Alfisol. Soil Biol Biochem 38:471–476. doi:10.1016/j.soilbio.2005.05.019

    CAS  Google Scholar 

  • Cai P, Huang Q, Jiang D, Rong X, Liang W (2006b) Microcalorimetric studies on the adsorption of DNA by soil colloidal particles. Coll Surf 49:49–54. doi:10.1016/j.colsurfb.2006.02.011

    CAS  Google Scholar 

  • Cai P, Huang Q, Jiang D, Rong X, Liang W (2006c) Microcalorimetric studies of the effects of MGCl2 concentrations and pH on the adsorption of DNA on montmorillonite, kaolinite and goethite. Appl Clay Sci 32:147–152. doi:10.1016/j.clay.2005.11.004

    CAS  Google Scholar 

  • Cai P, Huang Q, Zhu J, Jiang D, Zhou X, Rong X, Liang W (2006d) Effects of low-molecular-weight organic ligands and phosphate on DNA adsorption by soil colloids and minerals. Coll Surf B Biointerfaces 53:53–59

    Google Scholar 

  • Cai P, Huang Q, Zhang X (2006e) Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by Dnase. Environ Sci Technol 40:2971–2976. doi:10.1021/es0522985

    PubMed  CAS  Google Scholar 

  • Cai P, Huang Q, Chen W, Zhang D, Wang K, Jiang D, Liang W (2007) Soil colloids bound plasmid DNA: effect on transformation of E. coli and resistance to DNase I degradation. Soil Biol Biochem 39:1007–1013. doi:10.1016/j.soilbio.2006.11.010

    CAS  Google Scholar 

  • Ceccherini MT, Poté J, Kay E, Van Tran V, Maréchal J, Pietramellara G, Nannipieri P, Vogel T, Simonet P (2003) Degradation and transformability of DNA from transgenic leaves. Appl Environ Microbiol 69:673–678. doi:10.1128/AEM.69.1.673-678.2003

    PubMed  CAS  Google Scholar 

  • Ceccherini MT, Ascher J, Nannipieri P, Pietramellara G, Vogel T (2007) Vertical advection of extracellular DNA by water capillarity in soil column. Soil Biol Biochem 39:158–163. doi:10.1016/j.soilbio.2006.07.006

    CAS  Google Scholar 

  • Chamier B, Lorenz MG, Wackernagel W (1993) Natural transformation of Acinetobacter calcoaceticus by plasmid DNA absorbed on sand and groundwater aquifer material. Appl Environ Microbiol 59:1662–1667

    PubMed  CAS  Google Scholar 

  • Chiter A, Forbes JM, Blair GE (2000) DNA stability in plant tissues: implications for the possible transfer of genes from genetically modified foods. FEBS Lett 481:164–168. doi:10.1016/S0014-5793(00)01986-4

    PubMed  CAS  Google Scholar 

  • Coolen MJL, Overmann J (2007) 217 000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment. Environ Microbiol 9:238–249

    PubMed  CAS  Google Scholar 

  • Corinaldesi C, Danovaro R, dell’Anno A (2005) Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments. Appl Environ Microbiol 71:46–50. doi:10.1128/AEM.71.1.46-50.2005

    PubMed  CAS  Google Scholar 

  • Crecchio C, Stotzky G (1998) Binding of DNA on humic acids: effect on transformation of Bacillus subtilis and resistance to DNase. Soil Biol Biochem 30:1061–1067. doi:10.1016/S0038-0717(97)00248-4

    CAS  Google Scholar 

  • Crecchio C, Ruggiero P, Curci M, Colombo C, Palumbo G, Stotzky G (2005) Binding of DNA from Bacillus subtilis on montmorillonite-humic acids-aluminum or iron hydroxypolymers: effects on transformation and protection against DNase. Soil Sci Soc Am J 69:834–841. doi:10.2136/sssaj2004.0166

    CAS  Google Scholar 

  • DeFlaun MF, Paul JH, Davis D (1986) Simplified methods for dissolved DNA determination in aquatic environments. Appl Environ Microbiol 52:654–659

    PubMed  CAS  Google Scholar 

  • DeFlaun MF, Paul JH, Davis D (1987) Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Mar Ecol Prog Ser 38:65–73. doi:10.3354/meps038065

    CAS  Google Scholar 

  • Dell’Anno A, Corinaldesi C (2004) Degradation and turnover of extracellular DNA in marine sediments: ecological and methodological considerations. Appl Environ Microbiol 70:4384–4386. doi:10.1128/AEM.70.7.4384-4386.2004

    PubMed  CAS  Google Scholar 

  • Dell’Anno A, Danovaro R (2005) Extracellular DNA plays a key role in deep sea ecosystem functioning. Science 139:2179. doi:10.1126/science.1117475

    Google Scholar 

  • Dell’Anno A, Bomparte S, Danovaro R (2002) Quantification, base composition, and fate of extracellular DNA in marine sediments. Limnol Oceanogr 47:899–905

    Google Scholar 

  • Demanèche S, Jocteur-Monrozier L, Quiquampoix H, Simonet P (2001a) Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA. Appl Environ Microbiol 67:293–299. doi:10.1128/AEM.67.1.293-299.2001

    PubMed  Google Scholar 

  • Demanèche S, Bertolla F, Buret F, Nalin R, Sailland A, Auriol P, Vogel T, Simonet P (2001b) Laboratory-scale evidence for lightning-mediated gene transfer in soil. Appl Environ Microbiol 67:3440–3444. doi:10.1128/AEM.67.8.3440-3444.2001

    PubMed  Google Scholar 

  • DeVries J, Wackernagel W (2004) Microbial horizontal gene transfer and DNA release from transgenic crop plants. Plant Soil 266:91–104

    CAS  Google Scholar 

  • DeVries J, Heine M, Harms K, Wackernagel W (2003) Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of Acinetobacter sp. Appl Environ Microbiol 56:1960–1962

    Google Scholar 

  • Dillard JP, Seifert HS (2001) A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 41:263–277. doi:10.1046/j.1365-2958.2001.02520.x

    PubMed  CAS  Google Scholar 

  • Doran JL, Single WH, Roy KL, Hiratsuka K, Page WJ (1987) Plasmid transformation of Azotobacter vinelandii OP. J Gen Microbiol 113:2059–2072

    Google Scholar 

  • Douville M, Gagné F, Blaise C, André C (2007) Occurrence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment. Ecotoxicol Environ Saf 66:195–203. doi:10.1016/j.ecoenv.2006.01.002

    PubMed  CAS  Google Scholar 

  • Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244. doi:10.1146/annurev.micro.53.1.217

    PubMed  CAS  Google Scholar 

  • Duguid JG, Bloomfield VA (1995) Aggregation of melted DNA by divalent metal ion-mediated cross-linking. Biophys J 69:2642–2648

    PubMed  CAS  Google Scholar 

  • Dupray E, Caprais MP, Derrien A, Fach P (1997) Salmonella DNA persistence in natural seawater using PCR analysis. J Appl Microbiol 82:507–510. doi:10.1046/j.1365-2672.1997.00143.x

    PubMed  CAS  Google Scholar 

  • England LS, Vincent ML, Trevors JT, Holmes SB (2004) Extraction, detection and persistence of extracellular DNA in forest litter microcosms. Mol Cell Probes 18:313–319. doi:10.1016/j.mcp.2004.05.001

    PubMed  CAS  Google Scholar 

  • England LS, Pollok J, Vincent ML, Kreutzweiser D, Fick W, Trevors JT, Holmes SB (2005) Persistence of extracellular baculoviral DNA in aquatic microcosms: extraction, purification, and amplification by the polymerase chain reaction (PCR). Mol Cell Probes 19:75–80. doi:10.1016/j.mcp.2004.09.004

    PubMed  CAS  Google Scholar 

  • Fang Y, Hoh JH (1998) Early intermediates in spermidine induced DNA condensation on the surface of mica. J Am Chem Soc 120:8903–8909. doi:10.1021/ja981332v

    CAS  Google Scholar 

  • Finkel SE, Kolter R (2001) DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183:6288–6293. doi:10.1128/JB.183.21.6288-6293.2001

    PubMed  CAS  Google Scholar 

  • Flury M, Flühler M (1994) Susceptibility of soils to preferential flow of water: a field study. Water Resour Res 30:1945–1954. doi:10.1029/94WR00871

    Google Scholar 

  • Frostegård Å, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed  Google Scholar 

  • Franchi M, Bramanti E, Bonzi LM, Orioli PL, Vettori C, Gallori E (1999) Clay–nucleic acid complexes: characteristics and implications for the preservation of genetic material in primeval habitats. Orig Life Evol Biosph 29:297–315. doi:10.1023/A:1006557832574

    PubMed  CAS  Google Scholar 

  • Frischer ME, Stewart GJ, Paul JH (1994) Plasmid transfer to indigenous marine bacterial populations by natural transformation. FEMS Microbiol Ecol 15:127–136. doi:10.1111/j.1574-6941.1994.tb00237.x

    CAS  Google Scholar 

  • Fritze H, Pietikäinen J, Pennanen T (2000) Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur J Soil Sci 51:565–573. doi:10.1046/j.1365-2389.2000.00346.x

    CAS  Google Scholar 

  • Gallori E, Bazzicalupo M, dal Canto L, Fani R, Nannipieri P, Vettori C, Stotzky G (1994) Transformation of Bacillus subtilis by DNA bound on clay in non sterile: soil. FEMS Microbiol Ecol 15:119–126. doi:10.1111/j.1574-6941.1994.tb00236.x

    CAS  Google Scholar 

  • Gebhard F, Smalla K (1999) Monitoring field release of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol Ecol 28:261–272. doi:10.1111/j.1574-6941.1999.tb00581.x

    CAS  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    PubMed  CAS  Google Scholar 

  • Greaves MP, Wilson MJ (1969) The adsorption of nucleic acids by montmorillonite. Soil Biol Biochem 1:317–323. doi:10.1016/0038-0717(69)90014-5

    CAS  Google Scholar 

  • Green PJ (1994) The ribonucleases of higher plants. Annu Rev Plant Physiol Plant Mol Biol 45:421–445. doi:10.1146/annurev.pp.45.060194.002225

    CAS  Google Scholar 

  • Gueron M, Demaret J, Filoche M (2000) A unified theory of the B–Z transition of DNA in high and low concentrations of multivalent ions. Biophys J 78:1070–1083

    PubMed  CAS  Google Scholar 

  • Gulden RH, Lerat S, Hart MM, Powell JR, Trevors JT, Pauls KP, Klironomos JN, Swanton CJ (2005) Quantification of transgenic plant DNA in leachate water: real-time polymerase chain reaction analysis. J Agric Food Chem 53:5858–5865. doi:10.1021/jf0504667

    PubMed  CAS  Google Scholar 

  • Hendrickx L, Hausner M, Wuertz S (2003) Natural genetic transformation in monoculture Acinetobacter sp. BD413 biofilms. Appl Environ Microbiol 69:1721–1727. doi:10.1128/AEM.69.3.1721-1727.2003

    PubMed  CAS  Google Scholar 

  • Hentzer M, Riedel K, Rasmussen T, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Høiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiol 148:87–102

    CAS  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberger P, Kjelleberg S, Høiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815. doi:10.1093/emboj/cdg366

    PubMed  CAS  Google Scholar 

  • Herdina SN, Jabaji-Hare S, Ophel- Keller K (2004) Persistence of DNA of Gaeumannomyces graminis var. tritici in soil as measured by a DNA-based assay. FEMS Microbiol Ecol 47:143–152. doi:10.1016/S0168-6496(03)00255-1

    CAS  PubMed  Google Scholar 

  • Hofreiter M, Serre D, Poniar HN, Kuch M, Pääbo S (2001) Ancient DNA. Nat Rev Genet 2:353–360. doi:10.1038/35072071

    PubMed  CAS  Google Scholar 

  • Karl DM, Bailiff MD (1989) The measurement and distribution of dissolved nucleic acids in aquatic environments. Limnol Oceanogr 34:543–558

    CAS  Google Scholar 

  • Khanna M, Stotzky G (1992) Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl Environ Microbiol 58:1930–1939

    PubMed  CAS  Google Scholar 

  • Khanna M, Yoder L, Calamai L, Stotzky G (1998) X-ray diffractometry and electron microscopy of DNA from Bacillus subtilis bound on clay minerals. Science of Soils 3(1) Online journal, website: http://link.springer.de/link/service/journals/10112/fpapers/8003001/80030001.htm

  • LaKay FM, Botha A, Prior BA (2007) Comparative analysis of environmental DNA extraction and purification methods from different Humic acids-rich soil. J Appl Microbiol 102:265–273. doi:10.1111/j.1365-2672.2006.03052.x

    PubMed  CAS  Google Scholar 

  • Levy-Booth D, Campbell R, Gulden R, Hart M, Powell J, Klironomos J, Pauls K, Swanton C, Trevors J, Dunfield K (2007) Cycling of extracellular DNA in the soil environment. Soil Biol Biochem 39:2977–2991. doi:10.1016/j.soilbio.2007.06.020

    CAS  Google Scholar 

  • Li Y-H, Tang N, Aspiras MB, Lau P, Lee JH, Ellen RP, Cvitkovitch DG (2002) A quorum sensing signalling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708. doi:10.1128/JB.184.10.2699-2708.2002

    PubMed  CAS  Google Scholar 

  • Lorenz M, Wackernagel W (1987) Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl Environ Microbiol 53:2948–2952

    PubMed  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1990) Natural genetic transformation of Pseudomonas stutzeri by sand-absorbed DNA. Arch Microbiol 154:380–385. doi:10.1007/BF00276535

    PubMed  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1991) High frequency of natural genetic transformation of Pseudomonas stutzeri in soil extract supplemented with carbon7energy and phosphorus source. Appl Environ Microbiol 57:1246–1251

    PubMed  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    PubMed  CAS  Google Scholar 

  • Lorenz M, Aardema BW, Wackernagel W (1988) Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J Gen Microbiol 134:107–112

    PubMed  CAS  Google Scholar 

  • Lorenz MG, Gerjets D, Wackernagel W (1991) Release of transforming plasmid and chromosomal DNA from two cultured soil bacteria. Arch Microbiol 156:319–326. doi:10.1007/BF00263005

    PubMed  CAS  Google Scholar 

  • Lurquin PF (1997) Gene transfer by electroporation. Mol Biotechnol 7:5–35. doi:10.1007/BF02821542

    PubMed  CAS  Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385. doi:10.1007/s00374-004-0784-9

    CAS  Google Scholar 

  • Ma C, Bloomfield VA (1994) Condensation of supercoiled DNA induced by MnCl2. Biophys J 67:1678–1681

    PubMed  CAS  Google Scholar 

  • Marstorp H, Witter E (1999) Extractable dsDNA and product formation as measures of microbial growth in soil upon substrate addition. Soil Biol Biochem 31:1443–1453. doi:10.1016/S0038-0717(99)00065-6

    CAS  Google Scholar 

  • Maruyama F, Tani K, Kenzaka T, Yamaguchi N, Nasu M (2006) Quantitative determination of Free-DNA uptake in river bacteria at the single-cell level by in situ rolling-circle amplification. Appl Environ Microbiol 72:6248–6256. doi:10.1128/AEM.03035-05

    PubMed  CAS  Google Scholar 

  • Matsui K, Honjo M, Kawabata Z (2001) Estimation of the fate of dissolved DNA in thermally stratified lake water from stability of exogenous plasmid DNA. Aquat Microb Ecol 26:95–102. doi:10.3354/ame026095

    Google Scholar 

  • Matsui K, Ishii N, Kawabata Z (2003) Release of extracellular transformable plasmid DNA from Escherichia coli cocultivated with algae. Appl Environ Microbiol 69:2399–2404. doi:10.1128/AEM.69.4.2399-2404.2003

    PubMed  CAS  Google Scholar 

  • McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708. doi:10.1128/JB.182.10.2702-2708.2000

    PubMed  CAS  Google Scholar 

  • Melzak KA, Sherwood CS, Turner RFB, Haynes CA (1996) Driving forces for DNA adsorption to silica in perchlorate solutions. J Colloid Interface Sci 181:635–644. doi:10.1006/jcis.1996.0421

    CAS  Google Scholar 

  • Mercier A, Kay E, Simonet P (2006) Horizonal gene tranfer by natural transformation in soil environment. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin, Germany, pp 35–373

    Google Scholar 

  • Mishra N (2002) Nucleases: molecular biology and applications. Wiley, Hoboken, NJ, pp 45–60

    Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilization of the biofilm structure. Curr Opin Biotechnol 14:255–261. doi:10.1016/S0958-1669(03)00036-3

    PubMed  CAS  Google Scholar 

  • Nguyen TH, Elimelech M (2007a) Plasmid DNA adsorption on silica: kinetics and conformational changes in monovalent and divalent salts. Biomacromolecules 8:24–32. doi:10.1021/bm0603948

    PubMed  CAS  Google Scholar 

  • Nguyen TH, Elimelech M (2007b) Adsorption of plasmid DNA to natural organic matter coated silica surface: kinetics, conformation, and reversibility. Langmuir 23:3273–3279. doi:10.1021/la0622525

    PubMed  CAS  Google Scholar 

  • Nielsen KM (2003) An assessment of factors affecting the likelihood of horizontal transfer of recombinant plant DNA to bacterial recipients in the soil and rhizosphere. Collection of Biosafety Reviews, vol 1. ICGEB, Italy, pp 96–149

  • Nielsen KM, Smalla K, van Elsas JD (2000) Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens and Burkholderia cepacia in soil microcosms. Appl Environ Microbiol 66:206–212. doi:10.1128/AEM.66.3.1237-1242.2000

    PubMed  CAS  Google Scholar 

  • Nielsen KM, van Elsas JD, Smalla K (2001) Dynamics, horizontal transfer and selection of novel DNA in bacterial populations in the phytosphere of transgenic plants. Ann Microbiol 51:79–94

    CAS  Google Scholar 

  • Nielsen KM, Ray JL, van Elsas JD (2004) Natural transformation in soil: microcosm studies. Molecular microbial ecology manual, 5.3.2, 2nd edn. Kluwer, The Netherlands, pp 1–12

    Google Scholar 

  • Nielsen KM, Calamai L, Pietramellara G (2006) Stabilization of extracellular DNA by transient binding to various soil surfaces. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil (soil biology). vol. 8. Springer, Berlin Germany, pp 141–158

    Google Scholar 

  • Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ Biosafety Res 6:37–53. doi:10.1051/ebr:2007031

    PubMed  CAS  Google Scholar 

  • Niemeyer J, Gessler F (2002) Determination of free DNA in soils. J Plant Nutr Soil Sci 165:121–124. doi:10.1002/1522-2624(200204)165:2<121::AID-JPLN1111121>3.0.CO;2-X

    CAS  Google Scholar 

  • Nishimura S, Tanakal T, Fujita K, Itaya M, Hiraishil A, Kikuchil Y (2003) Extracellular DNA and RNA produced by a marine photosynthetic bacterium Rhodovulum sulfidophilum. Nucleic Acids Research Supplement 3:279–280

    CAS  Google Scholar 

  • Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66. doi:10.1016/0167-7012(87)90025-X

    CAS  Google Scholar 

  • Ogram A, Sayler GS, Gustin D, Lewis RJ (1988) DNA adsorption to soils and sediments. Environ Sci Technol 22:982–984. doi:10.1021/es00173a020

    CAS  Google Scholar 

  • Ogram AV, Mathot ML, Harsh JB, Boyle J, Pettigrew CA Jr (1994) Effects of DNA polymer length on its adsorption to soils. Appl Environ Microbiol 60:393–396

    PubMed  CAS  Google Scholar 

  • Paget E, Simonet P (1994) On the track of natural transformation in soil. FEMS Microbiol Ecol 15:109–118. doi:10.1111/j.1574-6941.1994.tb00235.x

    CAS  Google Scholar 

  • Paget E, Simonet P (1997) Development of engineered genomic DNA to monitor the natural transformation of Pseudomonas stutzeri in soil like microcosms. Can J Microbiol 43:78–84

    Article  CAS  Google Scholar 

  • Paget E, Jocteur Monrozier L, Simonet P (1992) Adsorption of DNA on clay minerals: protection against DNase I and influence on gene transfer. FEMS Microbiol Lett 97:31–40. doi:10.1111/j.1574-6968.1992.tb05435.x

    CAS  Google Scholar 

  • Paget E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. Eur J Soil Biol 34:81–84. doi:10.1016/S1164-5563(99)90005-5

    CAS  Google Scholar 

  • Palmen R, Hellingwerf KJ (1995) Acinetobacter calcoaceticus liberates chromosomal DNA during induction of competence by cell lysis. Curr Microbiol 30:7–10. doi:10.1007/BF00294516

    PubMed  CAS  Google Scholar 

  • Panikov NS (2007) Extracellular DNA in soils: quantitative assessment, binding to soil and resistance to degradation. Proceeding of European Geosciences Union (EGU), General Assembly, Wien, 15–20 April 2007

  • Paul J, Williams H (2004) Natural transformation in aquatic environments. Molecular microbial ecology manual, 2nd edn. Kluwer, The Netherlands, 5.01:1047–1068

  • Paul JH, DeFlaun MF, Jeffrey WH (1986) Elevated levels of microbial activity in the coral surface microlayer. Mar Ecol Prog Ser 33:29–40. doi:10.3354/meps033029

    Google Scholar 

  • Paul JH, Jeffrey WH, DeFlaun MF (1987) Dynamics of extracellular DNA in marine environment. Appl Environ Microbiol 53:170–179

    PubMed  CAS  Google Scholar 

  • Paul JH, Frischer ME, Thurmond JM (1991) Gene transfer in marine water column and sediment microcosms by natural plasmid transformation. Appl Environ Microbiol 57:1509–1515

    PubMed  CAS  Google Scholar 

  • Paul JH, Frischer ME, Thurmond JM (1992) Intergenic natural plasmid transformation between E. coli and a marine Vibrio species. Mol Ecol 1:37–46. doi:10.1111/j.1365-294X.1992.tb00153.x

    PubMed  CAS  Google Scholar 

  • Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell to cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234. doi:10.1073/pnas.96.20.11229

    PubMed  CAS  Google Scholar 

  • Pietramellara G, Dal Canto L, Vettori C, Gallori E, Nannipieri P (1997) Effects of air drying and wetting cycles on the transforming ability of DNA bound on clay minerals. Soil Biol Biochem 29:55–61. doi:10.1016/S0038-0717(96)00262-3

    CAS  Google Scholar 

  • Pietramellara G, Franchi M, Gallori E, Nannipieri P (2001) Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite. Biol Fertil Soils 33:402–409. doi:10.1007/s003740100341

    CAS  Google Scholar 

  • Pietramellara G, Ascher J, Ceccherini MT, Renella GC (2002) Soil as a biological system. Ann Microbiol 52:119–131

    Google Scholar 

  • Pietramellara G, Ceccherini MT, Ascher J, Nannipieri P (2006) Persistence of transgenic and not transgenic extracellular DNA in soil and bacterial transformation. Biol Forum 1:37–68

    Google Scholar 

  • Pietramellara G, Ascher J, Ceccherini MT, Nannipieri P, Wenderoth D (2007a) Adsorption of pure and dirty bacterial DNA on clay minerals and its transformation frequency. Biol Fertil Soils 43:731–739. doi:10.1007/s00374-006-0156-8

    CAS  Google Scholar 

  • Pietramellara G, Ascher J, Ceccherini MT, Guerri G, Nannipieri P (2007b) Fate of extracellular DNA in soil. Proceeding of European Geosciences Union (EGU), General Assembly, Wien, 15–20 April 2007

  • Poly F, Chenou C, Simonet P, Rouiller J, Jocteur Monrozier L (2000) Differences between linear chromosomal and supercoiled plasmid DNA in their mechanisms and extent of adsorption on clay minerals. Langmuir 16:1233–1238. doi:10.1021/la990506z

    CAS  Google Scholar 

  • Poté J, Ceccherini MT, Van VT, Rosselli W, Wildi W, Simonet P, Vogel TM (2003) Fate and transport of antibiotic resistance genes in saturated soil columns. Eur J Soil Biol 39:65–71. doi:10.1016/S1164-5563(03)00003-7

    Google Scholar 

  • Poté J, Rossé P, Rosselli W, Van VT, Wildi W (2005) Kinetics of mass and DNA decomposition in tomato leaves. Chemosphere 61:677–684. doi:10.1016/j.chemosphere.2005.03.030

    PubMed  Google Scholar 

  • Poté J, Rosselli W, Wigger A, Wildi W (2007) Release and leaching of plant DNA in unsaturated soil column. Ecotoxicol Environ Saf 68:293–298. doi:10.1016/j.ecoenv.2006.11.004

    PubMed  Google Scholar 

  • Ranjard L, Richaume A (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152:707–716. doi:10.1016/S0923-2508(01)01251-7

    PubMed  CAS  Google Scholar 

  • Reanney DC, Roberts WP, Kelly WJ (1982) Genetic interactions among microbial communities. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Academic, London, pp 287–322

    Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel T, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39:183–190. doi:10.1016/S1164-5563(03)00033-5

    CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNaseI. Appl Environ Microbiol 57:1057–1061

    PubMed  CAS  Google Scholar 

  • Ruiz TR, Andrews S, Smith GB (2000) Identification and characterization of nuclease activities in anaerobic environmental samples. Can J Microbiol 46:736–740. doi:10.1139/cjm-46-8-736

    PubMed  CAS  Google Scholar 

  • Saunders JR, Saunders VS (1988) Bacterial transformation with plasmid DNA. Methods Microbiol 21:79–128. doi:10.1016/S0580-9517(08)70071-0

    CAS  Google Scholar 

  • Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957. doi:10.1128/JB.00257-06

    PubMed  CAS  Google Scholar 

  • Schwartz E, Blazewicz S, Doucett R, Hungate B, Hart S, Dijkstra P (2007) Natural abundance δ15N and δ13C of DNA extracted from soil. Soil Biol Biochem 39:3101–3107. doi:10.1016/j.soilbio.2007.07.004

    CAS  Google Scholar 

  • Selenska S, Klingmueller W (1992) Direct recovery and molecular analysis of DNA and RNA from soil. Microb Releases 1:41–46

    PubMed  CAS  Google Scholar 

  • Shirtcliffe N, McHale G, Newton M, Pyatt B (2005) Soil hydrophobicity: preliminary results of an investigation of the effect of grain size and percentage of hydrophobic grains in a model system. Proceeding of Geophysical Research Abstracts, vol 7, pp 607–7962. European Geosciences Union

  • Sitko JC, Mateescu EM, Hansma HG (2003) Sequence dependent DNA condensation and the electrostatic zipper. Biophys J 84:419–431

    PubMed  CAS  Google Scholar 

  • Siuda W, Chrost RJ, Gude H (1998) Distribution and origin of dissolved DNA in lakes of different trophic states. Aquat Microb Ecol 15:89–96

    Google Scholar 

  • Siuda W, Chrost RJ (2000) Concentration and susceptibility of dissolved DNA for enzyme degradation in lake water—some methodological remarks. Aquat Microb Ecol 21:195–201

    Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2514–2621

    Google Scholar 

  • Solomon JM, Grossman AD (1996) Who’s competent and when: regulation of natural genetic competence in bacteria. Trends Genet 12:150–155. doi:10.1016/0168-9525(96)10014-7

    PubMed  CAS  Google Scholar 

  • Sparling PF (1996) Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 92:1364–1371

    Google Scholar 

  • Stein VM, Bond JF, Capp MW, Anderson CF, Record TM Jr (1995) Importance of Coulombic end effects on cation accumulation near oligoelectrolyte B-DNA: a demonstration using 23Na NMR. Biophys J 68:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Steinberger RE, Holden PA (2005) Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 71:5404–5410. doi:10.1128/AEM.71.9.5404-5410.2005

    PubMed  CAS  Google Scholar 

  • Steinberger RE, Allen AR, Hansma HG, Holden PA (2002) Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa unsaturated biofilms. Microb Ecol 43:416–423. doi:10.1007/s00248-001-1063-z

    PubMed  CAS  Google Scholar 

  • Steinmoen H, Knutsen E, Havarstein LS (2002) Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A 99:7681–7686. doi:10.1073/pnas.112464599

    PubMed  CAS  Google Scholar 

  • Stewart GJ (1992) Gene transfer in the environment: transformation. In: Fry J, Day M, Martin M (eds) Release of genetically engineered and other micro-organisms. Cambridge University Press, Cambridge, UK, pp 82–93

    Google Scholar 

  • Stewart GJ, Carlson CA (1986) The biology of natural transformation. Annu Rev Microbiol 40:211–235. doi:10.1146/annurev.mi.40.100186.001235

    PubMed  CAS  Google Scholar 

  • Stotzky G (1986) Influence of soil mineral colloids on metabolic process, growth, adhesion, and ecology of microbes and viruses. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Science Society of Americans, Madison, WI, pp 305–428

    Google Scholar 

  • Stouthamer AH (1979) The research for correlation between theoretical and experimental growth yields. Intern Rev Biochem 21:1–47

    CAS  Google Scholar 

  • Sun XG, Cao EH, Zhang XY, Liu D, Bai C (2002) The divalent cation induced DNA condensation studied by atomic force microscopy and spectra analysis. Inorg Chem Commun 5:181–186. doi:10.1016/S1387-7003(02)00320-9

    CAS  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix: an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227. doi:10.1016/S0966-842X(01)02012-1

    PubMed  CAS  Google Scholar 

  • Tamayo J, Miles M, Thein A, Soothill P (1999) Selective cleaning of the cell debris in human chromosome preparations studied by scanning force microscopy. J Struct Biol 128:200–210. doi:10.1006/jsbi.1999.4191

    PubMed  CAS  Google Scholar 

  • Tavares F, Sellsted A (2001) DNase-resistant DNA in the extracellular and cell wall-associated fractions of Frankia strains R43 and CcI3. Curr Microbiol 42:168–172. doi:10.1007/s002840010198

    PubMed  CAS  Google Scholar 

  • Thomas H, Stoddart JL (1980) Leaf senescence. Annu Rev Plant Physiol 31:83–111. doi:10.1146/annurev.pp.31.060180.000503

    CAS  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms and barriers to horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721. doi:10.1038/nrmicro1234

    PubMed  CAS  Google Scholar 

  • Thorsness PE, With KH, Fox D (1993) Inactivation of YME1, a number of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 13:5418–5426

    PubMed  CAS  Google Scholar 

  • Torsvik V, Goksøyr J (1978) Determination of bacterial DNA in soil. Soil Biol Biochem 10:7–12. doi:10.1016/0038-0717(78)90003-2

    Google Scholar 

  • Turner B, Newman S (2005) Phosphorus cycling in wetland soils: the importance of phosphate diesters. J Environ Qual 34:1921–1929. doi:10.2134/jeq2005.0060

    PubMed  CAS  Google Scholar 

  • Turner B, Baxter R, Mahieu N, Sjögersten S, Whitton B (2004) Phosphorus compounds in subartic Fennoscandian soils at the mountain birch (Betula pubescens)—tundra ecotone. Soil Biol Biochem 36:815–823. doi:10.1016/j.soilbio.2004.01.011

    CAS  Google Scholar 

  • Van Elsas JD, Duarte GF, Keijzer-Wolters A, Smit E (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Methods 43:133–151. doi:10.1016/S0167-7012(00)00212-8

    PubMed  Google Scholar 

  • Vettori C, Paffetti D, Pietramellara G, Stotzky G, Gallori E (1996) Amplification by random amplified polymorphic DNA (RAPD) technique of bacterial DNA bound on clay minerals. FEMS Microbiol Ecol 20:251–260. doi:10.1111/j.1574-6941.1996.tb00323.x

    CAS  Google Scholar 

  • Vincent RD, Hofmann TT, Zassenhaus HP (1988) Sequence and expression of NUC1, the gene encoding the mitochondrial nuclease in Saccharomyces cerevisiae. Nucleic Acids Res 16:3297–3312. doi:10.1093/nar/16.8.3297

    PubMed  CAS  Google Scholar 

  • Wackernagel W (2006) The various sources and the fate of nucleic acids in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin, Germany, pp 117–139

    Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487–1487. doi:10.1126/science.295.5559.1487

    PubMed  CAS  Google Scholar 

  • Whitehouse CA, Hannah EH (2007) Comparison of five commercial kits for the recovery of Francisella tularensis DNA from spiked soil samples. Mol Cell Probes 21:92–96. doi:10.1016/j.mcp.2006.08.003

    PubMed  CAS  Google Scholar 

  • Widmer F, Seidler RJ, Watrud LS (1996) Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol Ecol 5:603–613. doi:10.1111/j.1365-294X.1996.tb00356.x

    CAS  Google Scholar 

  • Widmer F, Seidler RJ, Donega KK, Reed GL (1997) Determination of microbial diversity in environmental samples: pit falls of PCR-based rRNA analysis. Mol Ecol 6:1–7. doi:10.1046/j.1365-294X.1997.00145.x

    CAS  Google Scholar 

  • Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc Lond B Biol Sci 272:3–16. doi:10.1098/rspb.2004.2813

    CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Brand TB, Ronn R, Barnes I, Wiuf C, Gilichinsky DA, Mitchell D, Cooper A (2004a) Long term persistence of bacterial DNA. Curr Biol 14:9–10. doi:10.1016/j.cub.2003.12.012

    Google Scholar 

  • Willerslev E, Hansen AJ, Poinar HN (2004b) Isolation of nuclei acids and cultures from ice and permafrost. Trends Ecol Evol 19:141–147. doi:10.1016/j.tree.2003.11.010

    PubMed  Google Scholar 

  • Zawadzki P, Cohan FM (1995) The size and continuity of DNA segments integrated in Bacillus transformation. Genetics 141:1231–1243

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by an Italian Ministry of Agriculture and Forestry (MiPAF) Research Project on “OGM in Agriculture” and a Special Integrative Found for Research (FISR) of the Italian Ministry for University and Research (MIUR) on “Sustainable developments and climate change”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pietramellara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietramellara, G., Ascher, J., Borgogni, F. et al. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45, 219–235 (2009). https://doi.org/10.1007/s00374-008-0345-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0345-8

Keywords

Navigation