Skip to main content

Advertisement

Log in

The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Physiology corrupts geochemical records of mollusk shells in many ways, e.g., by actively controlling the incorporation of trace elements in the skeleton. However, the effects of variable biomineralization rates and growth cessation have largely remained unconsidered. Mediated by endogenous timekeeping mechanisms, mollusks stop growing skeletal material on a regular basis ranging from ultradian to annual timescales. During growth cessation, the shells do not record environmental conditions. Shell growth also stops when environmental conditions are beyond the physiological tolerance of the organism, e.g., above and below genetically determined, species-specific thermal extremes where shell growth slows and eventually ceases. Such growth disruptions can occur at non-periodic time intervals. Due to growth retardations and halts, proxy records of mollusk shells are thus incomplete, and reconstructed environmental amplitudes prone to truncation. Furthermore, environmental records are biased toward the physiological optimum of the animal. Favorable environmental conditions increase shell growth, whereas adverse environmental conditions result in reduced shell production and lowered overall metabolism. Not least, the duration of the growing season and overall growth rate decrease as the mollusk grows older. Mathematical modeling approaches can significantly improve proxy records obtained from mollusk shells. For example, if the duration of growth cessation is known, it may be possible to model the missing environmental record. It is also fairly easy to account for age-related growth trends, or variable time-averaging in different portions of the shell. However, a major premise for a reliable interpretation of proxy records from a mollusk shell or other organisms secreting biogenic hard parts is a proper understanding of the physiology, and of course, a high-resolution record of the many different environmental factors that may influence physiology and shell growth. The present paper reviews examples from the literature, and unpublished data on how physiology influences geochemical proxy records from mollusk shells, and presents methods how to eliminate such adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansell AD (1968) The rate of growth of the hard clam Mercenaria mercenaria (L) throughout the geographical range. J Cons Perm Int Explor Mer 31:364–409

    Google Scholar 

  • Arnold WS, Marelli DC, Bert TM, Jones DS, Quitmyer IR (1991) Habitat-specific growth of hard clams Mercenaria mercenaria (L.) from the Indian River, Florida. J Exp Mar Biol Ecol 147:245–265

    Article  Google Scholar 

  • Bailey TR, Lear CH (2006) Testing the effect of carbonate saturation on the Sr/Ca of biogenic aragonite: a case study from the River Ehen, Cumbria, UK. Geochem Geophys Geosyst 7. doi:10.1029/2005GC001084

  • Beentjes MP, Williams BG (1986) Endogenous circatidal rhythmicity in the New Zealand cockle Chione stutchburyi (Bivalvia, Veneridae). Mar Behav Physiol 12:171–180

    Article  Google Scholar 

  • Beukema JJ, Meehan BW (1985) Latitudinal variation in linear growth and other shell characteristics of Macoma balthica. Mar Biol 90:27–33

    Article  Google Scholar 

  • Block GD, Wallace SF (1982) Localization of a circadian pacemaker in the eye of a mollusc, Bulla. Science 217:155–157

    Article  Google Scholar 

  • Brey T, Mackensen A (1997) Stable isotopes prove shell growth bands in the Antarctic bivalve Laternula elliptica to be formed annually. Polar Biol 17:465–468

    Article  Google Scholar 

  • Brockington S, Clarke A (2001) The relative influence of temperature and food on the metabolism of a marine invertebrate. J Exp Mar Biol Ecol 258:87–99

    Article  Google Scholar 

  • Buddemeier RW, Maragos JE (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Biol Ecol 14:179–200

    Article  Google Scholar 

  • Buick DP, Ivany LC (2004) 100 years in the dark: extreme longevity of Eocene bivalves from Antarctica. Geology 32:921–924

    Article  Google Scholar 

  • Cargnelli LM, Griesbach SJ, Packer DB, Weissberger E (1999) Essential fish habitat source document: ocean quahog, A. islandica, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-148. http://www.nefsc.noaa.gov/nefsc/publications/tm/tm148/tm148.pdf

  • Carter JG (ed) (1990) Skeletal biomineralization: patterns, processes and evolutionary trends, vol I. Van Nostrand Reinhold, New York

  • Castagna M, Kraeuter JN (1977) Mercenaria culture using stone aggregate for predator protection. Proc Natl Shellfish Ass 67:1–6

    Google Scholar 

  • Chauvaud L, Thouzeau G, Paulet Y-M (1998) Effects of environmental factors on the daily growth rate of Pecten maximus juveniles in the Bay of Brest (France). J Exp Mar Biol Ecol 227:83–111

    Article  Google Scholar 

  • Chauvaud L, Lorrain A, Dunbar RB, Paulet Y-M, Thouzeau G, Jean F, Guarini J-M, Mucciarone D (2005) Shell of the great scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes. Geochem Geophys Geosyst 6:Q08001 doi:10.1029/2004GC000890

    Article  Google Scholar 

  • Clark GR II (1974) Calcification on an unstable substrate: marginal growth in the mollusk Pecten diegensis. Science 183:968–970

    Article  Google Scholar 

  • Clark GR II (1975) Periodic growth and biological rhythms in experimentally grown bivalves. In: Rosenberg GD, Runcorn SK (eds) Growth rhythms and the history of the earth’s rotation. Wiley, London, pp 103–117

    Google Scholar 

  • Clark GR II (2005) Daily growth lines in some living pectens (Mollusca: Bivalvia), and some applications in a fossil relative: time and tide will tell. Palaeogeogr Palaeoclimatol Palaeoecol 228:26–42

    Article  Google Scholar 

  • Dalton R, Menzel W (1983) Seasonal gonadal development of young laboratory-spawned southern (Mercenaria campechiensis) and northern (Mercenaria mercenaria) quahoqs and their reciprocal hybrids in northern Florida. J Shellfish Res 3:11–17

    Google Scholar 

  • Dodd JR (1965) Environmental control of strontium and magnesium in Mytilus. Geochim Cosmochim Acta 29:385–398

    Article  Google Scholar 

  • Dunca E, Mutvei H (2001) Comparison of microgrowth pattern in Margaritifera margaritifera shells from south and north Sweden. Am Malacol Bull 16:239–250

    Google Scholar 

  • Dunca E, Schöne BR, Mutvei (2005) Freshwater bivalves tell of past climates: but how clearly do shells from polluted rivers speak. Palaeogeogr Palaeoclimatol Palaeoecol 228:43–57

    Article  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  Google Scholar 

  • Eertman RHM, Wagenvoort AJ, Hummel H, Smaal AC (1993) “Survival in air” of the blue mussel Mytilus edulis L. as a sensitive response to pollution-induced environmental stress. J Exp Mar Biol Ecol 170:179–195

    Article  Google Scholar 

  • Epstein S, Lowenstam HA (1953) Temperature-shell-growth relations of recent and interglacial Pleistocene shoal-water biota from Bermuda. J Geol 61:424–438

    Article  Google Scholar 

  • Evans JW (1972) Tidal growth increments in the cockle Clinocardium nuttalli. Science 176:416–417

    Article  Google Scholar 

  • Fritz LW, Haven DS (1983) Hard clam, Mercenaria mercenaria, shell growth patterns in the Chesapeake Bay. Fish Bull 81:697–708

    Google Scholar 

  • Gillikin DP, Lorrain A, Navez J, Taylor JW, André L, Keppens E, Baeyens W, Dehairs F (2005a) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochem Geophys Geosyst 6:Q05009 doi:10.1029/2004GC000874

    Article  Google Scholar 

  • Gillikin DP, Dehairs F, Baeyens W, Navez J, Lorrain A, André L (2005b) Inter- and intra-annual variations of Pb/Ca ratios in clam shells (Mercenaria mercenaria): a record of anthropogenic lead pollution. Mar Pollut Bull 50:1530–1540

    Article  Google Scholar 

  • Goodwin DH, Flessa KW, Schöne BR, Dettman DL (2001) Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve mollusk Chione cortezi: implications for paleoenvironmental analysis. Palaios 16:387–398

    Google Scholar 

  • Goodwin DH, Schöne BR, Dettman DL (2003) Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios 18:110–125

    Article  Google Scholar 

  • Grizzle RE, Lutz RA (1988) Descriptions of macroscopic banding patterns in sectioned and polished shells of Mercenaria mercenaria from southern New Jersey. J Shellfish Res 7:367–370

    Google Scholar 

  • Gunter G (1957) Temperature. Geol Soc Am Mem 67:159–184

    Google Scholar 

  • Hall CA Jr (1975) Latitudinal variation in shell growth patterns of bivalve molluscs: implications and problems. In: Rosenberg GD, Runcorn SK (eds) Growth rhythms and the history of the earth’s rotation. Wiley, London, pp 163–175

    Google Scholar 

  • Hall C Jr, Dollase WA, Corbató CE (1974) Shell growth in Tivela stultorum (Mawe, 1823) and Callista chione (Linnaeus, 1758) (Bivalvia): annual periodicity, latitudinal differences, and diminution with age. Palaeogeogr Palaeoclimatol Palaeoecol 15:33–61

    Article  Google Scholar 

  • Harmer SL, Panda S, Kay SA (2001) Molecular bases of circadian rhythms. Annu Rev Cell Dev Biol 17:215–53

    Article  Google Scholar 

  • Henderson JT (1929) Lethal temperatures of Lamellibranchiata. Contrib Can Biol Fish 4:399–411

    Google Scholar 

  • Incze LS, Lutz RA, Watling L (1980) Relationships between effects of environmental temperature and seston on growth and mortality of Mytilus edulis in a temperate northern estuary. Mar Biol 57:147–156

    Article  Google Scholar 

  • Ivany CL, Wilkinson BH, Jones DS (2003) Using stable isotopic data to resolve rate and duration of growth throughout ontogeny: an example from the surf clam, Spisula solidissima. Palaios 18:126–137

    Article  Google Scholar 

  • Ivany LC, Wilkinson BH, Lohmann KC, Johnson ER, McElroy BJ, Cohen GJ (2004) Intra-annual isotopic variation in Venericardia bivalves: implications for early Eocene temperature, seasonality, and salinity on the U.S. Gulf coast. J Sediment Geol 74:7–19

    Article  Google Scholar 

  • Jones DS (1980) Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecological significance. Paleobiology 6:331–340

    Google Scholar 

  • Jones DS (1981) Annual growth increments in shells of Spisula solidissima record marine temperature variability. Science 211:165–167

    Article  Google Scholar 

  • Jones DS (1983) Sclerochronology: reading the record of the molluscan shell. Am Sci 71:384–391

    Google Scholar 

  • Jones DS, Quitmyer IR (1996) Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11:340–346

    Article  Google Scholar 

  • Jones DS, Thompson I, Ambrose W (1978) Age and growth rate determinations for the Atlantic surf clam Spisula solidissima (Bivalvia: Mactracea), based on internal growth lines in shell cross-sections. Mar Biol 47:63–70

    Article  Google Scholar 

  • Jones DS, Arthur MA, Allard DJ (1989) Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Mar Biol 102:225–234

    Article  Google Scholar 

  • Kaandorp RJG, Vonhof HB, Wesselingh FP, Romero Pittman L, Kroon D, van Hinte JE (2005) Seasonal Amazonian rainfall variation in the Miocene climate optimum. Palaeogeogr Palaeoclimatol Palaeoecol 221:1–6

    Article  Google Scholar 

  • Kassner J, Malouf RE (1982) An evaluation of “spawners transplants” as a management tool in Long Island’s hard clam fishery. J Shellfish Res 2:165–172

    Google Scholar 

  • Kennish MJ, Olsson RK (1975) Effects of thermal discharges on the microstructural growth of Mercenaria mercenaria. Environ Geol 1:41–64

    Article  Google Scholar 

  • Kim W-S, Huh H-T, Je J-G, Han K-N (2003) Evidence of two-clock control of endogenous rhythm in the Washington clam, Saxidomus purpuratus. Mar Biol 142:305–309

    Google Scholar 

  • Krantz D, Jones D, Williams D (1987) Ecological and paleoenvironmental information using stable isotope profiles from living and fossil mollusks. Palaeogeogr Palaeoclimatol Palaeoecol 58:249–266

    Article  Google Scholar 

  • Lloyd D, Murray DB (2005) Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem Sci 30:373–377

    Article  Google Scholar 

  • Loosanoff VL (1937) Seasonal gonadal changes of adult clams, Venus mercenaria (L.). Biol Bull (Woods Hole) 72:406–416

    Article  Google Scholar 

  • Loosanoff VL, Davis HC (1963) Rearing of bivalve molluscs. Adv Mar Biol 1:1–136

    Article  Google Scholar 

  • Lorrain A, Gillikin DP, Paulet Y-M, Chauvaud L, Le Mercier A, Navez J, André L (2005) Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geology 33:965–968

    Article  Google Scholar 

  • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 4:407–441

    Article  Google Scholar 

  • Marchitto TA, Jones GA, Goodfriend GA, Weidman CR (2000) Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quat Res 53:236–246

    Article  Google Scholar 

  • Miyaji T, Tanabe K, Schöne BR (2007) Environmental controls on daily shell growth of Phacosoma japonicum (Bivalvia: Veneridae) from Japan. Mar Ecol Prog Ser 336:141–150

    Article  Google Scholar 

  • Mook WG, Vogel JC (1968) Isotopic equilibrium between shells and their environment. Science 159:874–875

    Article  Google Scholar 

  • Ohno T (1989) Palaeotidal characteristics determined by micro-growth patterns in bivalves. Palaeontology 32:237–263

    Google Scholar 

  • Page HM, Hubbard DM (1987) Temporal and spatial patterns of growth in mussels Mytilus edulis on an offshore platform: relationships to water temperature and food availability. J Exp Mar Biol Ecol 111:159–179

    Article  Google Scholar 

  • Palmer JD (1974) Biological clocks in marine organisms. The control of physiological and behavioral tidal rhythms. Wiley, New York

    Google Scholar 

  • Palmer JD (1995) Review of the dual-clock control of tidal rhythms and the hypothesis that the same clock governs both circatidal and circadian rhythms. Chronobiol Int 12:299–310

    Article  Google Scholar 

  • Parsons GJ, Robinson SMC, Roff JC, Dadswell MJ (1993) Daily growth rates as indicated by valve ridges in postlarval Giant Scallop (Placopecten magellanicus) (Bivalvia: Pectinidae). Can J Fish Aquat Sci 50:456–464

    Article  Google Scholar 

  • Pittendrigh CS, Bruce CG (1957) An oscillator model for biological clocks. In: Rudnick D (ed) Rhythmic and synthetic processes in growth. Princeton University Press, Princeton, NJ, pp 75–109

    Google Scholar 

  • Purton LMA, Shields GA, Brasier M, Grime GW (1999) Metabolism controls Sr/Ca ratios in fossil aragonitic mollusks. Geology 27:1083–1086

    Article  Google Scholar 

  • Ravera O, Beone GM, Trincherini PR, Riccardi N (2007) Seasonal variations in metal content of two Unio pictorum mancus (Mollusca, Unionidae) populations from two lakes of different trophic state. J Limnol 66:28–39

    Google Scholar 

  • Rensing L, Meyer-Grahle U, Ruoff P (2001) Biological timing and the clock metaphor: oscillatory and hourglass mechanisms. Chronobiol Int 18:329–369

    Article  Google Scholar 

  • Richardson CA (1987) Tidal bands in the shell of the clam Tapes philippinarum. Proc R Soc Lond B230:367–387

    Article  Google Scholar 

  • Richardson CA, Crisp DJ, Runham NW (1979) Tidally deposited growth bands in the shell of the common cockle, Cerastoderma edule. Malacologia 18:277–290

    Google Scholar 

  • Roberts MH, Xie X (1986) Phase relationship between ocular and behavioral circadian rhythms in Bulla gouldiana exposed to different photoperiods. Physiol Behav 59:703–708

    Article  Google Scholar 

  • Rodland DL, Schöne BR, Helama S, Nielsen JK, Baier S (2006) A clockwork mollusc: ultradian rhythms in bivalve activity revealed by digital photography. J Exp Mar Biol Ecol 334:316–323

    Article  Google Scholar 

  • Ropes JW, Jones DS, Murawski SA, Serchuk FM, Ambrose J Jr (1984) Documentation of annual growth lines in ocean quahogs, Arctica islandica Linné. Fish Bull 82:1–19

    Google Scholar 

  • Runcorn SK (1975) Palaeontological and astronomical observations on the rotational history of the earth and moon. In: Rosenberg GD, Runcorn SK (eds) Growth rhythms and the history of the earth’s rotation. Wiley, London, pp 485–488

    Google Scholar 

  • Sato S (1995) Spawning periodicity and shell microgrowth patterns of the venerid bivalve Phacosoma japonicum (Reeve, 1850). Veliger 38:61–72

    Google Scholar 

  • Schöne BR, Fiebig J (2008) Seasonality in the North Sea during selected climate transitions (Allerød and Late Medieval Climate Optimum)—bivalve sclerochronology (Arctica islandica). Int J Earth Sci (in press)

  • Schöne BR, Giere O (2005) Growth increments and stable isotope variation in shells of the deep-sea hydrothermal vent bivalve mollusk Bathymodiolus brevior from the North Fiji Basin, Pacific Ocean. Deep-Sea Res I 52:1896–1910

    Article  Google Scholar 

  • Schöne BR, Flessa KW, Dettman DL, Goodwin DH, Roopnarine PD (2002) Sclerochronology and growth of the bivalve mollusks Chione fluctifraga and C. cortezi in the northern Gulf of California, Mexico. Veliger 45:45–54

    Google Scholar 

  • Schöne BR, Tanabe K, Dettman DL, Sato S (2003) Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar Biol 142:473–485

    Google Scholar 

  • Schöne BR, Freyre Castro AD, Fiebig J, Houk SD, Oschmann W, Kröncke I (2004) Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeogr Palaeoclimatol Palaeoecol 212:215–232

    Google Scholar 

  • Schöne BR, Dunca E, Fiebig J, Pfeiffer M (2005a) Mutvei’s solution: an ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeogr Palaeoclimatol Palaeoecol 228:149–166

    Article  Google Scholar 

  • Schöne BR, Houk SD, Freyre Castro AD, Fiebig J, Kröncke I, Dreyer W, Oschmann W (2005b) Daily growth rates in shells of Arctica islandica: assessing subseasonal environmental controls on a long-lived bivalve mollusk. Palaios 20:78–92

    Article  Google Scholar 

  • Schöne BR, Pfeiffer M, Pohlmann T, Siegismund F (2005c) A seasonally resolved bottom-water temperature record for the period AD 1866–2002 based on shells of Arctica islandica (Mollusca, North Sea). Int J Climatol 25:947–962

    Article  Google Scholar 

  • Schöne BR, Fiebig J, Pfeiffer M, Gleß R, Hickson J, Johnson ALA, Dreyer W, Oschmann W (2005d) Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeogr Palaeoclimatol Palaeoecol 228:130–148

    Article  Google Scholar 

  • Schöne BR, Rodland DL, Fiebig J, Oschmann W, Goodwin D, Flessa KW, Dettman D (2006) Reliability of multitaxon, multiproxy reconstructions of environmental conditions from accretionary biogenic skeletons. J Geol 114:267–285

    Article  Google Scholar 

  • Stecher HA III, Krantz DE, Lord CJ III, Luther GW III, Bock KW (1996) Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochim Cosmochim Acta 60:3445–3456

    Article  Google Scholar 

  • Strom A, Francis RC, Mantua NJ, Miles EL, Peterson DL (2004) North Pacific climate recorded in growth rings of geoduck clams: a new tool for paleoenvironmental reconstruction. Geophys Res Lett 31:L06206 doi:10.1029/2004GL019440

    Article  Google Scholar 

  • Surge DM, Lohmann KC, Goodfriend GA (2003) Reconstructing estuarine conditions: oyster shells as recorders of environmental change, Southwest Florida. Estuar Coast Shelf Sci 57:737–756

    Article  Google Scholar 

  • Takahashi JS, Nelson DE, Eskin A (1989) Immunocytochemical localization of serotonergic fibers innervating the ocular circadian system of Aplysia. J Neurosci 28:139–147

    Article  Google Scholar 

  • Tanabe K (1988) Age and growth rate determinations of an intertidal bivalve, Phacosoma japonicum, using internal shell increments. Lethaia 21:231–241

    Article  Google Scholar 

  • Tanabe K, Oba T (1988) Latitudinal variation in shell growth patterns of Phacosoma japonicum (Bivalvia: Veneridae) from the Japanese coast. Mar Ecol Prog Ser 47:75–82

    Article  Google Scholar 

  • Thompson I, Jones DS, Dreibelbis D (1980) Annual internal growth banding and life history of the Ocean Quahog Arctica islandica (Mollusca: Bivalvia). Mar Biol 57:25–34

    Article  Google Scholar 

  • Urey HC, Lowenstam HA, Epstein S, McKinney CR (1951) Measurement of paleotemperatures and temperatures of the upper Cretaceous of England, Denmark and the southeastern United States. Bull Geol Soc Am 62:399–416

    Article  Google Scholar 

  • von Bertalanffy L (1938) A quantitative theory of organic growth. Human Biol 10:181–213

    Google Scholar 

  • Wanamaker AD Jr, Kreutz KJ, Schöne BR, Pettigrew N, Borns HW, Introne DS, Belknap D, Maasch KA, Feindel S (2008) Coupled North Atlantic slope water forcing on Gulf of Maine temperatures over the past millennium. Clim Dyn 31:183–194

    Article  Google Scholar 

  • Wanink JH, Zwarts L (1993) Environmental effects on the growth rate of intertidal invertebrates and some implications for foraging waders. Neth J Sea Res 31:407–418

    Article  Google Scholar 

  • Watanabe T, Oba T (1999) Daily reconstruction of water temperature from oxygen isotopic ratios of a modern Tridacna shell using a freezing microtome sampling technique. J Geophys Res 104:20667–20674

    Article  Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Article  Google Scholar 

  • Weidman CR, Jones GA, Lohmann KC (1994) The long-lived mollusc Arctica islandica: a new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of the northern North Atlantic Ocean. J Geophys Res 99:18305–18314 22753

    Article  Google Scholar 

  • Wells JW (1963) Coral growth and geochronometry. Nature 197:948–950

    Article  Google Scholar 

  • Widdows J, Nasci C, Fossato VU (1997) Effects of pollution on the scope for growth of mussels (Mytilus galloprovincialis) from the Venice Lagoon, Italy. Mar Environ Res 43:69–79

    Article  Google Scholar 

  • Williams BG, Pilditch CA (1997) The entrainment of persistent tidal rhythmicity in a filter-feeding bivalve using cycles of food availability. J Biol Rhythms 12:173–181

    Article  Google Scholar 

  • Williams DF, Arthur MA, Jones DS, Healy-Williams N (1982) Seasonality and mean annual surface temperatures from isotopic and sclerochronological records. Nature 296:432–434

    Article  Google Scholar 

  • Witbaard R, Duineveld CA, Bergman M (2001) The effect of tidal resuspension on benthic food quality on the southern North Sea. Senckenbergiana maritima 31:225–234

    Article  Google Scholar 

  • Zolotarev VN (1980) The life span of bivalves from the Sea of Japan and Sea of Okhotsk. Soviet J Mar Biol 6:301–308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd R. Schöne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöne, B.R. The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Mar Lett 28, 269–285 (2008). https://doi.org/10.1007/s00367-008-0114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-008-0114-6

Keywords

Navigation