Skip to main content
Log in

Quantum Ergodic Sequences and Equilibrium Measures

  • Published:
Constructive Approximation Aims and scope

Abstract

We generalize the definition of a “quantum ergodic sequence” of sections of ample line bundles \(L \rightarrow M\) from the case of positively curved Hermitian metrics h on L to general smooth metrics. A choice of smooth Hermitian metric h on L and a Bernstein–Markov measure \(\nu \) on M induces an inner product on \(H^0(M, L^N)\). When \(||s_N||_{L^2} =1\), quantum ergodicity is the condition that \(|s_N(z)|^2 d\nu \rightarrow d\mu _{\varphi _{eq}} \) weakly, where \(d\mu _{\varphi _{eq}} \) is the equilibrium measure associated with \((h, \nu )\). The main results are that normalized logarithms \(\frac{1}{N} \log |s_N|^2\) of quantum ergodic sections tend to the equilibrium potential, and that random orthonormal bases of \(H^0(M, L^N)\) are quantum ergodic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Also written \(\omega _{\varphi } \) with \(\varphi = - \log h\).

  2. Both notations \(\varphi _{eq} \) and \( V^*_{h, K}\), and also \(P_K(\varphi )\), are standard and we use them interchangeably. \(V^*_{h,K}\) is called the pluri-complex Green’s function in [10] and elsewhere.

  3. In other words, is \(U_N^* U_N = \Pi _N + o(1)\), where o(1) is measured in the operator norm?

  4. A pluripolar set is a subset of the \(-\infty \) set of a plurisubharmonic function.

  5. The notation \(B_{h^N, \nu }(z,z)\) is used in articles of Berman; \(\Pi _{h^N, \nu }(z)\) is the contraction of the diagonal \(\Pi _{h^N, \nu }(z,z)\).

  6. \(F_N\) is denoted \(\mathcal {L}_N\) in [8].

  7. Thanks to Turgay Bayraktar for the reference and explanations of this point.

References

  1. Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159(1), 31–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayraktar, T.: Equidistribution of zeros of random holomorphic sections. Indiana Univ. Math. J. 65(5), 1759–1793 (2016). arXiv:1312.0933

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, R.: Super Toeplitz operators on line bundles. J. Geom. Anal. 16(1), 1–22 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, R.: Bergman kernels and equilibrium measures for line bundles over projective manifolds. Am. J. Math. 131(5), 1485–1524 (2009). arXiv:0704.1640

    Article  MathSciNet  MATH  Google Scholar 

  5. Berman, R.: Bergman kernels for weighted polynomials and weighted equilibrium measures of \({\mathbb{C}}^n\). Indiana Univ. Math. J. 58(4), 1921–1946 (2009). arXiv:math/0702357

    Article  MathSciNet  MATH  Google Scholar 

  6. Berman, R., Berndtsson, B., Sjoestrand, J.: A direct approach to Bergman kernel asymptotics for positive line bundles. Ark. Mat. 46(2), 197–217 (2008). arXiv:math/0506367

    Article  MathSciNet  MATH  Google Scholar 

  7. Berman, R., Boucksom, S.: Growth of balls of holomorphic sections and energy at equilibrium. Invent. Math. 181(2), 337–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berman, R., Boucksom, S., Witt, D.: Nystrom, Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207(1), 1–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berman, R., Nystroöm, D.W.: Convergence of Berman measure for high powers of a line bundle, arXiv: 0805.2846

  10. Bloom, T.: Random polynomials and Green functions. Int. Math. Res. Not 28, 1689–1708 (2005)

  11. Bloom, T.: Weighted polynomials and weighted pluripotential theory. Trans. Am. Math. Soc. 361(4), 2163–2179 (2009). arXiv:math/0610330

    Article  MathSciNet  MATH  Google Scholar 

  12. Bloom, T.: Random polynomials and (pluri-)potential theory. Ann. Polon. Math 91(23), 131–141 (2007). arXiv:math/0610330

    Article  MathSciNet  MATH  Google Scholar 

  13. Bloom, T., Levenberg, N.: Asymptotics for Christoffel functions of planar measures. J. Anal. Math. 106, 353–371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bloom, T., Levenberg, N.: Random polynomials and pluripotential-theoretic extremal functions. Potential Anal. 42(2), 311–334 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bloom, T., Shiffman, B.: Zeros of random polynomials on \({\mathbb{C}}^{m}\). Math. Res. Lett. 14(3), 469–479 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Monvel, L.Boutet, Guillemin, V.: The Spectral Theory of Toeplitz Operators, Ann. Math. Studies 99. Princeton University Press, Princeton (1981)

    Google Scholar 

  17. Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegö. Asterisque 34–35, 123–164 (1976)

    MATH  Google Scholar 

  18. Coman, D., Marinescu, G.: Equidistribution results for singular metrics on line bundles. Ann. Sci. Ec. Norm. Super. (4) 48(3), 497–536 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dinh, T.-C., Ma, X., Marinescu, G.: Equidistribution and convergence speed for zeros of holomorphic sections of singular Hermitian line bundles. J. Funct. Anal. 271(11), 3082–3110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dinh, T.C., Sibony, N.: Distribution des valeurs de transformations meromorphes et applications. Comment. Math. Helv. 81, 221–258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Faure, F., Tsujii, M.: Prequantum transfer operator for symplectic Anosov diffeomorphism. Asterisque No. 375 (2015)

  22. Griffiths, P., Harris, J.: Principles of algebraic geometry, Pure and Applied Mathematics. Wiley, New York (1978)

    MATH  Google Scholar 

  23. Guedj, V., Zeriahi, A.: Intrinsic capacities on compact Khler manifolds. J. Geom. Anal. 15(4), 607–639 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels, Progress in Math. 254, Birkhauser (2007)

  25. Nonnemacher, S., Voros, A.: Chaotic eigenfunctions in phase space. J. Statist. Phys. 92, 431–518 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shiffman, B.: Convergence of random zeros on complex manifolds. Sci. China Ser. A 51(4), 707–720 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shiffman, B., Zelditch, S.: Distribution of zeros of random and quantum chaotic sections of positive line bundles. Comm. Math. Phys. 200(3), 661–683 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shiffman, B., Zelditch, S.: Equilibrium distribution of zeros of random polynomials. Int. Math. Res. Not. 2003, 25–49 (2003)

  29. Shiffman, B., Zelditch, S.: Number variance of random zeros on complex manifolds. Geom. Funct. Anal. 18(4), 1422–1475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Szegö, G.: Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehoren. Math. Zeit. 9, 218–270 (1921)

    Article  MATH  Google Scholar 

  31. Szegö, G.: Orthogonal Polynomials, vol. 23, 4th edn. American Mathematical Society, Colloquium Publications, Providence (1975)

    MATH  Google Scholar 

  32. Zeitouni, O., Zelditch, S.: Large deviations of empirical measures of zeros of random polynomials. Int. Math. Res. Not. 2010, 3935–3992 (2010)

  33. Zelditch, S.: Index and dynamics of quantized contact transformations. Ann. Inst. Fourier (Grenoble) 47(1), 305–363 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Notices 6, 317–331 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Thanks to R. Berman for comments on an earlier version, in particular for emphasizing that Definition 1.1 should be consistent with the expected mass formula for random sequences. Thanks also to T. Bayraktar for remarks and references on Theorem 3.5, and to the referees for many comments that helped improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Zelditch.

Additional information

Communicated by Sylvia Serfaty.

Research partially supported by NSF Grant and DMS-1541126 and by the Stefan Bergman trust.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelditch, S. Quantum Ergodic Sequences and Equilibrium Measures. Constr Approx 47, 89–118 (2018). https://doi.org/10.1007/s00365-017-9397-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-017-9397-z

Keywords

Mathematics Subject Classification

Navigation