Skip to main content
Log in

Robustness of a truncated estimator for the smaller of two ordered means

  • Short Communication
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this note, we consider the problem of estimating the smaller of two ordered means. Such problems frequently arise in applications where, for example, aggregated data are observed. In order to combine information from direct and indirect observations, we use the Stein-type truncated estimator. We show that it dominates the direct estimator for distributions with log-concave or log-convex densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bagnoli M, Bergstrom T (2005) Log-concave probability and its applications. Econ Theor 26:445–469

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya CG (1984) Two inequalities with an application. Ann Inst Stat Math 36:129–134

    Article  MathSciNet  MATH  Google Scholar 

  • Blumenthal S, Cohen A (1968a) Estimation of the larger translation parameter. Ann Math Stat 39:502–516

    Article  MathSciNet  MATH  Google Scholar 

  • Blumenthal S, Cohen A (1968b) Estimation of two ordered translation parameters. Ann Math Stat 39:517–530

    Article  MathSciNet  MATH  Google Scholar 

  • Chang Y-T, Shinozaki N (2006) Estimation of ordered means of two Poisson distributions. Commun Stat Theory Methods 35:1993–2003

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen A, Sackrowitz HB (1970) Estimation of the last mean of a monotone sequence. Ann Math Stat 41:2021–2034

    Article  MathSciNet  MATH  Google Scholar 

  • Garg N, Misra N (2021) Componentwise equivariant estimation of order restricted location and scale parameters in bivariate models: a unified study. Preprint at http://arxiv.org/abs/2109.14997

  • Hudson HM (1978) A natural identity for exponential families with applications in multiparameter estimation. Ann Stat 6:473–484

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang JT, Peddada SD (1994) Confidence interval estimation subject to order restrictions. Ann Stat 22:67–93

    Article  MathSciNet  MATH  Google Scholar 

  • Jena AK, Tripathy MR (2019) Estimating ordered quantiles of two exponential populations with a common minimum guarantee time. Commun Stat Theory Methods 48:3570–3585

    Article  MathSciNet  MATH  Google Scholar 

  • Katz MW (1963) Estimating ordered probabilities. Ann Math Stat 34:967–972

    Article  MathSciNet  MATH  Google Scholar 

  • Kelly RE (1989) Stochastic reduction of loss in estimating normal means by isotonic regression. Ann Stat 17:937–940

    Article  MathSciNet  MATH  Google Scholar 

  • Kubokawa T, Saleh AKMDE (1994) Estimation of location and scale parameters under order restrictions. J Stat Res 28:41–51

    MathSciNet  Google Scholar 

  • Kumar S, Sharma D (1988) Simultaneous estimation of ordered parameters. Commun Stat Theory Methods 17:4315–4336

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar S, Sharma D (1989) On the pitman estimator op ordered normal means. Commun Stat Theory Methods 18:4163–4175

    Article  MATH  Google Scholar 

  • Kumar S, Sharma D (1993) Minimaxity of the Pitman estimator of ordered normal means when variances are unequal. J Indian Soc Agric Stat 45:230–234

    MathSciNet  Google Scholar 

  • Kumar S, Kumar A, Tripathi YM (2005a) A Note on the Pitman estimator of ordered normal means when the variances are unequal. Commun Stat Theory Methods 34:2115–2122

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar S, Tripathi YM, Misra N (2005b) James–Stein type estimators for ordered normal means. J Stat Comput Simul 75:501–511

    Article  MathSciNet  MATH  Google Scholar 

  • Kushary D, Cohen A (1991) Estimation of ordered Poisson parameters. Sankhyā Indian J Stat Ser A 53:334–356

    MathSciNet  MATH  Google Scholar 

  • Lee CIC (1981) The quadratic loss of isotonic regression under normality. Ann Stat 9:686–688

    Article  MathSciNet  MATH  Google Scholar 

  • Lee CIC (1988) Quadratic loss of order restricted estimators for treatment means with a control. Ann Stat 16:751–758

    Article  MathSciNet  MATH  Google Scholar 

  • Misra N, Choudhary PK, Dhariyal ID, Kundu D (2002) Smooth estimators for estimating order restricted scale parameters of two gamma distributions. Metrika 56:143–161

    Article  MathSciNet  MATH  Google Scholar 

  • Misra N, Iyer SK, Singh H (2004) The linex risk of maximum likelihood estimators of parameters of normal populations having order restricted means. Sankhyā Indian J Stat 66:652–677

    MathSciNet  MATH  Google Scholar 

  • Patra LK, Kumar S (2017) Estimating ordered means of a bivariate normal distribution. Am J Math Manag Sci 36:118–136

    Google Scholar 

  • Patra LK, Kumar S, Petropoulos C (2021) Componentwise estimation of ordered scale parameters of two exponential distributions under a general class of loss function. Statistics 55:595–617

    Article  MathSciNet  MATH  Google Scholar 

  • Polson NG, Scott JG, Windle J (2013) Bayesian inference for logistic models using pólya-gamma latent variables. J Am Stat Assoc 108:1339–1349

    Article  MATH  Google Scholar 

  • Shonkwiler JS (2016) Variance of the truncated negative binomial distribution. J Econometr 195:209–210

    Article  MathSciNet  MATH  Google Scholar 

  • Singh H, Misra N, Li S (2005) Estimation of order restricted concentration parameters of von Mises distributions. Commun Stat Simul Comput 34:21–40

    Article  MathSciNet  MATH  Google Scholar 

  • Stein C (1964) Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Ann Inst Stat Math 16:155–160

    Article  MathSciNet  MATH  Google Scholar 

  • van Eeden C (2006) Restricted parameter space problems—admissibility and minimaxity properties. Lecture notes in statistics. Springer, New York

    MATH  Google Scholar 

  • Vijayasree G, Singh H (1991) Simultaneous estimation of two ordered exponential parameters. Commun Stat Theory Methods 20:2559–2576

    Article  MathSciNet  MATH  Google Scholar 

  • Vijayasree G, Misra N, Singh H (1995) Componentwise estimation of ordered parameters of \(k(\ge 2)\) exponential populations. Ann Inst Stat Math 47:287–307

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor, the associate editor, and the two reviewers for many valuable comments and helpful suggestions which improved the paper. Research of the authors was supported in part by Grant-in-Aid for Scientific Research (22K20132, 20J10427, 19K11852, 18K11188) from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Hamura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proofs

Here we prove Propositions 2.2, 3.1, 3.2 and Lemma 2.2.

Proof of Proposition 2.2. We have

$$\begin{aligned} {2 {\widetilde{R}}' (v) \over E[ Z 1(X> (1 + v) Z) ]}&= 2 E \Big [ \Big \{ {X + (1 + v) Z \over 2} - \mu \Big \} Z 1(X> (1 + v) Z) \Big ] \nonumber \\&\quad / E[ Z 1(X > (1 + v) Z) ] \nonumber \\&= \frac{ \int _{0}^{\infty } x f(x) \big \{ \int _{0}^{x / (1 + v)} z f(z) dz \big \} dx }{ \int _{0}^{\infty } f(x) \big \{ \int _{0}^{x / (1 + v)} z f(z) dz \big \} dx } \nonumber \\&\quad + \frac{ \int _{0}^{\infty } (1 + v) z^2 f(z) \big \{ \int _{(1 + v) z}^{\infty } f(x) dx \big \} dz }{ \int _{0}^{\infty } z f(z) \big \{ \int _{(1 + v) z}^{\infty } f(x) dx \big \} dz } - 2 \mu \nonumber \\&= \frac{ \int _{0}^{\infty } x f(x) \big \{ \int _{0}^{x} z f(z / (1 + v)) dz \big \} dx }{ \int _{0}^{\infty } f(x) \big \{ \int _{0}^{x} z f(z / (1 + v)) dz \big \} dx } \nonumber \\&\quad + \frac{ \int _{0}^{\infty } z^2 f(z / (1 + v)) \big \{ \int _{z}^{\infty } f(x) dx \big \} dz }{ \int _{0}^{\infty } z f(z / (1 + v)) \big \{ \int _{z}^{\infty } f(x) dx \big \} dz } \nonumber \\&\quad - \frac{ \int _{0}^{\infty } x f(x) \big \{ \int _{0}^{x} f(z) dz \big \} dx }{ \int _{0}^{\infty } f(x) \big \{ \int _{0}^{x} f(z) dz \big \} dx } - \frac{ \int _{0}^{\infty } z f(z) \big \{ \int _{z}^{\infty } f(x) dx \big \} dz }{ \int _{0}^{\infty } f(z) \big \{ \int _{z}^{\infty } f(x) dx \big \} dz } \text {.} \end{aligned}$$
(5.1)

Now, by assumption,

$$\begin{aligned} z {\partial \over \partial z} \log {z f(z / (1 + v)) \over f(z)}&= 1 + {z \over 1 + v} {f' (z / (1 + v)) \over f(z / (1 + v))} - z {f' (z) \over f(z)} \ge 0 \text {.} \end{aligned}$$

Therefore, \(z f(z / (1 + v)) / f(z)\) is a nondecreasing function of \(z > 0\), which implies that \(\int _{0}^{x} z f(z / (1 + v)) dz / \int _{0}^{x} f(z) dz\) is a nondecreasing function of \(x > 0\). Thus, by the covariance inequality, the right-hand side of (5.1) is nonnegative. The result follows. \(\square \)

Proof of Lemma 2.2. We prove parts (i) and (ii) based on the proofs of Lemmas 3 and 4 of Bagnoli and Bergstrom (2005), which are for the continuous case. Without loss of generality, we can assume that \(k = 1\) and \(x_2 = x_1 + 1\). Let \(F(- 1) = f(- 1) = 0\).

For part (i), note that \(f(x - 1) / f(x) \ge f(z - 1) / f(z)\) for all \(x, z \in \mathbb {N} _0\) with \(x \ge z\) by the log-concavity of f. Then, for all \(x \in \mathbb {N} _0\),

$$\begin{aligned} {f(x) - f(x - 1) \over f(x)} F(x)&= {f(x) - f(x - 1) \over f(x)} \sum _{z = 0}^{x} f(z) \\&\le \sum _{z = 0}^{x} {f(z) - f(z - 1) \over f(z)} f(z) = f(x) \text {,} \end{aligned}$$

which implies that

$$\begin{aligned} f(x - 1) \ge f(x) F(x - 1) / F(x) \text {.} \end{aligned}$$

Therefore,

$$\begin{aligned} {F( x_2 ) \over F( x_2 + k)} - {F( x_1 ) \over F( x_1 + k)}&= {F( x_1 + 1) \over F( x_1 + 2)} - {F( x_1 ) \over F( x_1 + 1)} \\&= {f( x_1 + 1) \over F( x_1 + 1)} - {f( x_1 + 2) \over F( x_1 + 2)} \\&\ge {f( x_1 + 2) \over F( x_1 + 2)} - {f( x_1 + 2) \over F( x_1 + 2)} = 0 \text {.} \end{aligned}$$

For part (ii), note that \(f(x) / f(x + 1) \ge f(z) / f(z + 1)\) for all \(x, z \in \mathbb {N} _0\) with \(x \le z\) by the log-convexity of f. Then, for all \(x \in \mathbb {N} _0\),

$$\begin{aligned} {f(x + 1) - f(x) \over f(x + 1)} \{ 1 - F(x) \}&= {f(x + 1) - f(x) \over f(x + 1)} \sum _{z = x}^{\infty } f(z + 1) \\&\le \sum _{z = x}^{\infty } {f(z + 1) - f(z) \over f(z + 1)} f(z + 1) = - f(x) \text {,} \end{aligned}$$

where the last equality follows from the assumption that \(\lim _{z \rightarrow \infty } f(z) = 0\), and thus we have

$$\begin{aligned} f(x) \ge f(x + 1) \{ 1 - F(x - 1) \} / \{ 1 - F(x) \} \text {.} \end{aligned}$$

Hence,

$$\begin{aligned} {1 - F( x_2 + k) \over 1 - F( x_2)} - {1 - F( x_1 + k) \over 1 - F( x_1)}&= {1 - F( x_1 + 2) \over 1 - F( x_1 + 1)} - {1 - F( x_1 + 1) \over 1 - F( x_1 )} \\&= {f( x_1 + 1) \over 1 - F( x_1 )} - {f( x_1 + 2) \over 1 - F( x_1 + 1)} \\&\ge {f( x_1 + 2) \over 1 - F( x_1 + 1)} - {f( x_1 + 2) \over 1 - F( x_1 + 1)} = 0 \text {.} \end{aligned}$$

For part (iii), let \(W = X + Z\) and \(T = X - Z\). Let \(S = 1(W \in 2 \mathbb {N} _0 + 1)\). Suppose first that \(\{ \partial / ( \partial x) \} \{ \log f(x) \} \) is a convex function of \(x \in [0, \infty )\) and that \(E[ W | S = 0 ] \le E[ W | S = 1 ]\). Then

$$\begin{aligned} E[ W | T \ge 1 ]&= E[ W | |T| \ge 1 ] = \frac{ \displaystyle \sum _{w = 0}^{\infty } w \sum _{\begin{array}{c} - w \le t \le w \\ w - t \in 2 \mathbb {N} _0 \\ |t| \ge 1 \end{array}} f \Big ( {w + t \over 2} \Big ) f \Big ( {w - t \over 2} \Big ) }{ \displaystyle \sum _{w = 0}^{\infty } \sum _{\begin{array}{c} - w \le t \le w \\ w - t \in 2 \mathbb {N} _0 \\ |t| \ge 1 \end{array}} f \Big ( {w + t \over 2} \Big ) f \Big ( {w - t \over 2} \Big ) }, \end{aligned}$$

and

$$\begin{aligned} E[ W ]&= \frac{ \displaystyle \sum _{w = 0}^{\infty } w \sum _{\begin{array}{c} - w \le t \le w \\ w - t \in 2 \mathbb {N} _0 \end{array}} f \Big ( {w + t \over 2} \Big ) f \Big ( {w - t \over 2} \Big ) }{ \displaystyle \sum _{w = 0}^{\infty } \sum _{\begin{array}{c} - w \le t \le w \\ w - t \in 2 \mathbb {N} _0 \end{array}} f \Big ( {w + t \over 2} \Big ) f \Big ( {w - t \over 2} \Big ) } \text {.} \end{aligned}$$

Note that for \(w \in \mathbb {N} _0\),

$$\begin{aligned}&\sum _{\begin{array}{c} - w \le t \le w \\ w - t \in 2 \mathbb {N} _0 \\ |t| \ge 1 \end{array}} f \Big ( {w + t \over 2} \Big ) f \Big ( {w - t \over 2} \Big ) / \sum _{\begin{array}{c} - w \le t \le w \\ w - t \in 2 \mathbb {N} _0 \end{array}} f \Big ( {w + t \over 2} \Big ) f \Big ( {w - t \over 2} \Big ) \\&\quad = {\left\{ \begin{array}{ll} \rho (w) \text {,} &{} \text {if } w \in 2 \mathbb {N} _0 \text {,} \\ 1 \text {,} &{} \text {if } w \in 2 \mathbb {N} _0 + 1 \text {,} \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} \rho (w)&= \sum _{\begin{array}{c} - w \le t \le w \\ w - t \in 2 \mathbb {N} _0 \\ |t| \ge 2 \end{array}} f \Big ( {w + t \over 2} \Big ) f \Big ( {w - t \over 2} \Big ) / \sum _{\begin{array}{c} - w \le t \le w \\ w - t \in 2 \mathbb {N} _0 \end{array}} f \Big ( {w + t \over 2} \Big ) f \Big ( {w - t \over 2} \Big ) \\&= 1 - 1 / \sum _{\begin{array}{c} - w \le t \le w \\ w - t \in 2 \mathbb {N} _0 \end{array}} f \Big ( {w + t \over 2} \Big ) f \Big ( {w - t \over 2} \Big ) / \Big \{ f \Big ( {w \over 2} \Big ) \Big \} ^2 \in [0, 1], \end{aligned}$$

is a nondecreasing function of \(w \in 2 \mathbb {N} _0\) by assumption. Then it follows from Theorem 2.1 of Bhattacharya (1984) that

$$\begin{aligned} E[ W | T \ge 1 ]&= \frac{ E[ W \{ (1 - S) \rho (W) + S \} ] }{ E[ (1 - S) \rho (W) + S ] } \ge E[ W ] \text {,} \end{aligned}$$

since E[W|S] and \(E[ (1 - S) \rho (W) + S | S]\) are nondecreasing functions of S by assumption and since W and \((1 - S) \rho (W) + S\) are nondecreasing functions of W. Next, suppose instead that f is log-convex. Then

$$\begin{aligned} E[ X + Z | T \ge 1 ]&= E[ E[ X + Z | T ] | T \ge 1 ] \\&= E \Big [ \frac{ \sum _{z = 0}^{\infty } (2 z + T) f(z + T) f(z) }{ \sum _{z = 0}^{\infty } f(z + T) f(z) } \Big | T \ge 1 \Big ] \\&\ge E \Big [ \frac{ \sum _{z = 0}^{\infty } (2 z + T) \{ f(z) \} ^2 }{ \sum _{z = 0}^{\infty } \{ f(z) \} ^2 } \Big | T \ge 1 \Big ] \\&\ge E \Big [ \frac{ \sum _{z = 0}^{\infty } 2 z \{ f(z) \} ^2 }{ \sum _{z = 0}^{\infty } \{ f(z) \} ^2 } \Big | T \ge 1 \Big ] = E[ X + Z | T = 0 ] \text {,} \end{aligned}$$

where the first inequality follows from the covariance inequality since \(f(z + T) / f(z)\) is a nondecreasing function of \(z \in \mathbb {N} _0\) by assumption. Thus,

$$\begin{aligned} E[ W ]&= P(T = 0) E[ W | T = 0 ] + P(T \ge 1) E[ W | T \ge 1 ] + P(T \le - 1) E[ W | T \le - 1 ] \\&= P(T = 0) E[ W | T = 0 ] + \{ 1 - P(T = 0) \} E[ W | T \ge 1 ] \le E[ W | T \ge 1 ] \text {.} \end{aligned}$$

This completes the proof. \(\square \)

Proof of Proposition 3.1. Let \(W = X + Y\) and \(R = X / W\). Let \({\Delta }= E [ ( \max \{ Y, (X + Y) / 2 \} - {\alpha }_2 )^2 ] - E[ (Y - {\alpha }_2 )^2 ]\). Note that \(W \sim \mathrm{{Ga}} ( {\alpha }_1 + {\alpha }_2 , 1)\) and \(R \sim \mathrm{{Beta}} ( {\alpha }_1 , {\alpha }_2 )\) and these are mutually independent.

For part (i), suppose that \({\alpha }_1 = {\alpha }_2\). Then it can be seen that

$$\begin{aligned} {\Delta }&= E \Big [ \Big [ W^2 \Big \{ \Big ( {1 \over 2} \Big ) ^2 - (1 - R)^2 \Big \} - 2 {\alpha }_2 W \Big \{ {1 \over 2} - (1 - R) \Big \} \Big ] 1 \Big ( 1 - R< {1 \over 2} \Big ) \Big ] \\&= E \Big [ \Big [ \{ 2 {\alpha }_2 + (2 {\alpha }_2 )^2 \} \Big \{ \Big ( {1 \over 2} \Big ) ^2 - (1 - R)^2 \Big \} - 2 {\alpha }_2 (2 {\alpha }_2 ) \Big \{ {1 \over 2} - (1 - R) \Big \} \Big ] 1 \Big ( 1 - R < {1 \over 2} \Big ) \Big ] \\&\sim {\alpha }_2 / 4 > 0 \end{aligned}$$

as \({\alpha }_2 \rightarrow 0\).

For part (ii), let \(\phi (R) = \max \{ Y, (X + Y) / 2 \} / Y = \max \{ 1, 1 / \{ 2 (1 - R) \} \} \). Then

$$\begin{aligned} {\Delta }&= E[ \{ \phi (R) - 1 \} (1 - R) [ \{ \phi (R) + 1 \} (1 - R) W^2 - 2 {\alpha }_2 W ] ] \\&= E[ \{ \phi (R) - 1 \} (1 - R) [ \{ \phi (R) + 1 \} (1 - R) ( {\alpha }_1 + {\alpha }_2 + 1) - 2 {\alpha }_2 ] ] ( {\alpha }_1 + {\alpha }_2 ) \text {.} \end{aligned}$$

Since \(\{ \phi (R) + 1 \} (1 - R) \le 1\) when \(\phi (R) - 1 \ne 0\) and since \({\alpha }_1 + {\alpha }_2 + 1 < 2 {\alpha }_2\) by assumption, it follows that \({\Delta }< 0\). \(\square \)

Proof of Proposition 3.2. Let \(W = X + Y\) and \(R = X / W\). For part (i), let \(\phi _1 (R) = \min \{ X, (X + Y) / 2 \} / X = \min \{ 1, 1 / (2 R) \} \). Then we have

$$\begin{aligned}&E[ X \phi _1 (R) / {\alpha }_1 - 1 - \log \{ X \phi _1 (R) / {\alpha }_1 \} ] - E[ X / {\alpha }_1 - 1 - \log (X / {\alpha }_1 ) ] \\&= E[ - W R \{ 1 - \phi _1 (R) \} / {\alpha }_1 - \log \phi _1 (R) ]\\&= E[ - R \{ 1 - \phi _1 (R) \} ( {\alpha }_1 + {\alpha }_2 ) / {\alpha }_1 - \log \phi _1 (R) ] \text {,} \end{aligned}$$

which is negative since \(( {\alpha }_1 + {\alpha }_2 ) / {\alpha }_1 \ge 2\) by assumption and since \(2 R \{ 1 - \phi _1 (R) \} + \log \phi _1 (R) > 0\) when \(\phi _1 (R) \ne 1\). For part (ii), let \(\phi _2 (R) = \max \{ 1, 1 / \{ 2 (1 - R) \} \} \). Then

$$\begin{aligned}&E[ Y \phi _2 (R) / {\alpha }_2 - 1 - \log \{ Y \phi _2 (R) / {\alpha }_2 \} ] - E[ Y / {\alpha }_2 - 1 - \log (Y / {\alpha }_2 ) ] \\&= E[ W (1 - R) \{ \phi _2 (R) - 1 \} / {\alpha }_2 - \log \phi _2 (R) ]\\&= E[ (1 - R) \{ \phi _2 (R) - 1 \} ( {\alpha }_1 + {\alpha }_2 ) / {\alpha }_2 - \log \phi _2 (R) ] \text {,} \end{aligned}$$

which is negative since \(( {\alpha }_1 + {\alpha }_2 ) / {\alpha }_1 \le 2\) and since \(2 (1 - R) \{ \phi _2 (R) - 1 \} - \log \phi _2 (R) < 0\) when \(\phi _2 (R) \ne 1\). \(\square \)

1.2 Details of the approximation algorithm used in Sect. 4.5

First, the density proportional to

$$\begin{aligned} \Big ( {1 \over 2} \Big ) ^{\mu } \sqrt{\sum _{k = 0}^{\infty } \mathrm{{NB}} (k | \mu , 1 / 2) \{ \psi _1 ( \mu ) - \psi _1 ( \mu + k) \} } \text {,} \quad \mu \in (0, \infty ) \text {,} \end{aligned}$$

is approximated by \(\mathrm{{Ga}} (1 / 2, \log 2)\) because for all \(k \in \mathbb {N} _0\) and all \(\mu \in (0, \infty )\),

$$\begin{aligned} \Big \{ \psi _1 ( \mu ) - \psi _1 ( \mu + k), {1 \over \mu } {k \over \mu + k - 1} \Big \} \subset \Big [ {1 \over \mu } {k \over \mu + k}, {1 \over \mu - 1} {k \over \mu + k - 1} \Big ] \text {,} \end{aligned}$$

provided that \(\mu > 1\), and because

$$\begin{aligned} \sqrt{\sum _{k = 0}^{\infty } \mathrm{{NB}} (k | \mu , 1 / 2) {1 \over \mu } {k \over \mu + k - 1}} = \sqrt{{1 \over \mu } {1 \over 2}} \propto \mu ^{1 / 2 - 1}, \end{aligned}$$

for all \(\mu \in (0, \infty )\) (see Hudson (1978) for the equality). Next, note that for all \(K \in \mathbb {N}\) and all \(\mu \in (0, \infty )\),

$$\begin{aligned}&\sqrt{\sum _{k = 0}^{K} \mathrm{{NB}} (k | \mu , 1 / 2) \{ \psi _1 ( \mu ) - \psi _1 ( \mu + k) \} } \le \pi ^\mathrm{{J}} ( \mu ) \\&\le \sqrt{\psi _1 ( \mu ) + \sum _{k = 0}^{K} \mathrm{{NB}} (k | \mu , 1 / 2) \{ - \psi _1 ( \mu + k) \} + P( {\widetilde{X}}> K) \{ - \psi _1 ( \mu + E[ {\widetilde{X}}| {\widetilde{X}}> K ] ) \} }, \end{aligned}$$

by Jensen’s inequality, where \({\widetilde{X}}\sim \mathrm{{NB}} ( \mu , 1 / 2)\) and where \(E[ {\widetilde{X}}| {\widetilde{X}}> K ]\) is expressible in closed form (see Shonkwiler (2016)). Then, based on these inequalities, the acceptance ratio can be bounded below and above with arbitrary accuracy in MH steps (such an approach is used, for example, by Polson et al. (2013)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamura, Y., Kubokawa, T. Robustness of a truncated estimator for the smaller of two ordered means. Stat Papers 64, 2225–2244 (2023). https://doi.org/10.1007/s00362-022-01371-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01371-3

Keywords

Navigation