Skip to main content
Log in

Genetic repression of the antioxidant enzymes reduces the lifespan in Drosophila melanogaster

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Aging is a biological process associated with gradual loss of function caused by cellular and molecular damages ultimately leading to mortality. Free radicals are implicated in oxidative damage which affects the longevity of organisms. Natural cellular defenses involving antioxidant enzymes delay or prevent oxidative damage and, therefore, influence the aging process and longevity has been shown in many species including Drosophila. We and others have shown that oxidative resistance is an important mechanism in the aging process in Drosophila. Therefore, we hypothesized that repressing endogenous antioxidant defenses shortens longevity in Drosophila. To study the influence of natural defense mechanisms against oxidative stress in aging, we have investigated the effect of genetic repression of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), on longevity in Drosophila using transgenic RNAi flies and in vivo inhibition of the enzymes with chemical inhibitors. RNAi lines of Drosophila viz., UAS-sod1-IR and UAS-cat-IR, are driven ubiquitously using Act5C-Gal4 and Tubulin-Gal4 to achieve the suppression of SOD1 and CAT activities, respectively. We show that genetic repression of SOD1 and CAT by RNAi in transgenic flies led to drastically reduced longevity (SOD1, 77%; CAT, 83%), presenting the evidence for the role of endogenous antioxidant defenses in lifespan extension in Drosophila. Further, our study shows that the enzyme inhibitors, diethyldithiocarbamate and 3-amino-1,2,4-triazole, although lower the enzyme activities in vivo in flies, but did not affect longevity, which could be attributed to the factors such as bioavailability and metabolism of the inhibitors and adaptive mechanisms involving de novo synthesis of the enzymes. Our study of genetic repression using transgenic RNAi provides experimental evidence that extended longevity is associated with endogenous antioxidant defenses and aging is correlated with oxidative stress resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 05:121–125

    Article  Google Scholar 

  • Alic N, Hoddinott MP, Foley A, Slack C, Piper MDW, Partridge L (2012) Detrimental effects of RNAi: a cautionary note on its use in Drosophila ageing studies. PLoS ONE 7:e45367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer CR, Sakaluk SK, Selman C, Royle NJ, Hunt J (2013) Oxidative stress and the evolution of sex differences in lifespan and ageing in the decorated cricket, Gryllodes sigillatus. Evolution 67:620–634

    Article  CAS  PubMed  Google Scholar 

  • Arking R (2001) Gene expression and regulation in the extended longevity phenotypes of Drosophila. Ann NY Acad Sci 928:157–167

    Article  CAS  PubMed  Google Scholar 

  • Arking R, Force AG, Dudas SP, Buck S, Baker GT III (1996) Factors contributing to the plasticity of the extended longevity phenotypes of Drosophila. Exp Gerontol 31:623–643

    Article  CAS  PubMed  Google Scholar 

  • Arking R, Burde V, Graves K, Hari R, Feldman E, Zeevi A, Soliman S, Saraiya A, Buck S, Vettraino J, Sathrasala K (2000) Identical longevity phenotypes are characterized by different patterns of gene expression and oxidative damage. Exp Gerontol 35:353–373

    Article  CAS  PubMed  Google Scholar 

  • Arking R, Buck S, Hwangbo D-S, Lane M (2002) Metabolic alterations and shift in energy allocations are corequisites for the expression of extended longevity genes in Drosophila. Ann NY Acad Sci 959:251–262

    Article  CAS  PubMed  Google Scholar 

  • Arnelle DR, Day BJ, Stamler JS (1997) Diethyl dithiocarbamate-induced decomposition of S-nitrosothiols. Nitric Oxide 1:56–64

    Article  CAS  PubMed  Google Scholar 

  • Aversa R, Petrescu RVV, Apicella A, Petrescu FIT (2016) One can slow down the aging through antioxidants. Am J Eng Appl Sci 9(4):1112–1126

    Article  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581

    Article  CAS  PubMed  Google Scholar 

  • Bewley G, Laurie-Ahlberg CC (1984) Genetic variation affecting the expression of catalase in Drosophila melanogaster: correlations with rates of enzyme synthesis and degradation. Genetics 106:435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackney MJ, Cox R, Shepherd D, Parker JD (2014) Cloning and expression analysis of Drosophila extracellular Cu Zn superoxide dismutase. Biosci Rep 34:e00164

    Article  PubMed  PubMed Central  Google Scholar 

  • Buck SA, Arking R (2002) Metabolic alterations in genetically selected Drosophila strains with different longevities. J Am Aging Assoc 24:151–162

    Google Scholar 

  • Clement MV, Luo L (2020) Organismal aging and oxidants beyond macromolecules damage. Proteomics 20(5–6):e1800400

    Article  PubMed  Google Scholar 

  • Deepashree S, Haddadi M, Ramesh SR, Shivanandappa T (2012) Isolation of a long lifespan strain of Drosophila melanogaster. Drosoph Inf Serv 95:101–103

    Google Scholar 

  • Deepashree S, Shivanandappa T, Ramesh SR (2017) Life history traits of an extended longevity phenotype of Drosophila melanogaster. Curr Aging Sci 10:224–238

    Article  CAS  PubMed  Google Scholar 

  • Deepashree S, Shivanandappa T, Ramesh SR (2018) Is longevity a heritable trait? Evidence for non-genomic influence from an extended longevity phenotype of Drosophila melanogaster. Curr Aging Sci 11:24–32

    Article  CAS  PubMed  Google Scholar 

  • Deepashree S, Niveditha S, Shivanandappa T, Ramesh SR (2019) Oxidative stress resistance as a factor in aging: evidence from an extended longevity phenotype of Drosophila melanogaster. Biogerontology 20:497–513

    Article  CAS  PubMed  Google Scholar 

  • Dudas SP, Arking R (1995) Coordinate upregulation of the antioxidant gene activities is associated with the delayed onset of senescence in a long lived strain of Drosophila. J Gerontol Biol Sci 50A:B117–B127

    Article  CAS  Google Scholar 

  • Durusoy M, Diril N, Bozcuk AN (1995) Age-related activity of catalase in different genotypes of Drosophila melanogaster. Exp Gerontol 30:77–86

    Article  CAS  PubMed  Google Scholar 

  • Gems D, Doonan R (2009) Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell Cycle 8(11):1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Guarante L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  • He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44(2):532–553

    Article  PubMed  Google Scholar 

  • Ikeno Y, Flores LC (2020) Oxidative stress in aging: stayin’ alive? Aging Pathobiol Ther 2(2):62–63

    Article  CAS  Google Scholar 

  • Jones DP (2015) Redox theory of aging. Redox Biol 5:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junqueira VBC, Barros SBM, Chan SS, Rodrigues L, Giavarotti L, Abud RL, Deucher GP (2004) Aging and oxidative stress. Mol Aspects Med 25:5–16

    Article  CAS  PubMed  Google Scholar 

  • Kato R (1967) Effect of administration of 3-aminotriazole on the activity of microsomal drug-metabolizing enzyme systems of rat liver. Jpn J Pharmacol 17:56–63

    Article  CAS  PubMed  Google Scholar 

  • Kirby K, Hu J, Hilliker AJ, Phillips JP (2002) RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci USA 99:16162–16167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuether K, Arking R (1999) Drosophila selected for extended longevity are more sensitive to heat shock. Age 22:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bourg E (2001) Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS Lett 498:183–186

    Article  PubMed  Google Scholar 

  • Lints FA, Soliman HM (1988) Drosophila as a model organism for ageing studies. Blackie and Son, Ltd., Glasgow

    Book  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI (2021) Interplay between bioenergetics and oxidative stress at normal brain aging. Aging as a result of increasing disbalance in the system oxidative stress-energy provision. Pflugers Arch 473(5):713–722

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB (2007) Diethyldithiocarbamate injection induces transient oxidative stress in goldfish tissues. Chem Biol Interact 170(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Margoliash E, Novogrodsky A, Schejter A (1959) Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem J 74:339–348

    Article  Google Scholar 

  • Marklund SL, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15(6):575–591

    Article  CAS  PubMed  Google Scholar 

  • Mockett RJ, Bayne ACV, Kwong LK, Orr WC, Sohal RS (2003) Ectopic expression of catalase in Drosophila Mitochondria increases stress resistance but not longevity. Free Radic Biol Med 34:207–217

    Article  CAS  PubMed  Google Scholar 

  • Negroni MA, Foitzik S, Feldmeyer B (2019) Long-lived Temnothorax ant queens switch from investment in immunity to antioxidant production with age. Sci Rep 9(1):7270

    Article  PubMed  PubMed Central  Google Scholar 

  • Niveditha S, Deepashree S, Ramesh SR, Shivanandappa T (2017) Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster. J Comp Physiol B 187:899–909

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1992) The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 297:35–41

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1993) Effects of Cu–Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 301:34–40

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  CAS  PubMed  Google Scholar 

  • Partridge L, Fowler K (1992) Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 46:76–91

    Article  PubMed  Google Scholar 

  • Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ (1989) A null mutation of cSOD in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci USA 86:2761–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JP, Tainer JA, Getzoff ED, Boulianne GL, Kirby K, Hilliker AJ (1995) Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium. Proc Natl Acad Sci USA 92:8574–8578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JP, Parkes TL, Hilliker AJ (2000) Targeted neuronal gene expression and longevity in Drosophila. Exp Gerontol 35:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Rose MR (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38:1004–1010

    Article  PubMed  Google Scholar 

  • Ruiz-Ojeda FJ, Gomez-Llorente C, Aguilera CM, Gil A, Rupérez AI (2016) Impact of 3-amino-1,2,4-triazole (3-AT)-derived increase in hydrogen peroxide levels on inflammation and metabolism in human differentiated adipocytes. PLoS ONE 11(3):e0152550

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B (2019) Antioxidant compounds and their antioxidant mechanism. Antioxidants. IntechOpen

    Google Scholar 

  • Sohal RS, Farmer KJ, Allen RG, Ragland SS (1984) Effects of diethyldithiocarbamate on life span, metabolic rate, superoxide dismutase, catalase, inorganic peroxides and glutathione in the adult male housefly, Musca domestica. Mech Ageing Dev 24:175–183

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR, Selman C (2011) The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan. BioEssays 33(4):255–259

    Article  PubMed  Google Scholar 

  • Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19:216–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasaki E, Kobayashi K, Matsuura K, Iuchi Y (2017) An efficient antioxidant system in a long-lived termite queen. PLoS ONE 12(1):e0167412

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyler R, Brar H, Singh M, Latorre A, Graves JL, Mueller LD, Rose MR, Ayala FJ (1993) The effect of superoxide dismutase alleles on aging in Drosophila. Genetica 91:143–149

    Article  CAS  PubMed  Google Scholar 

  • Viña J (2019) The free radical theory of frailty: mechanisms and opportunities for interventions to promote successful aging. Free Radic Biol Med 134:690–694

    Article  PubMed  Google Scholar 

  • Warner HR (1994) Superoxide dismutase, aging and degenerative disease. Free Radic Biol Med 17:249–258

    Article  CAS  PubMed  Google Scholar 

  • Warraich UE, Hussain F, Kayani HUR (2020) Aging–oxidative stress, antioxidants and computational modeling. Heliyon 6(5):e04107

    Article  PubMed  PubMed Central  Google Scholar 

  • Wit J, Sarup P, Lupsa N, Malte H, Frydenberg J, Loeschcke V (2013) Longevity for free? Increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased lifespan. Exp Gerontol 48:349–357

    Article  PubMed  Google Scholar 

  • Xiong CX (2010) The metal ion content of Drosophila melanogaster expressing copper-zinc superoxide dismutase (CuZnSOD). Thesis submitted to College of Science and Mathematics, California State University, Fresno

  • Yang J, Dong S, Jiang Q, Kuang T, Huang W, Yang J (2013) Changes in expression of manganese superoxide dismutase, copper and zinc superoxide dismutase and catalase in Brachionus calyciflorus during the aging process. PLoS ONE 8:e57186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziada AS, Smith MR, Côté HCF (2020) Updating the free radical theory of aging. Front Cell Dev Biol 8:575645

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The first author thanks the Department of Science and Technology, Government of India, for the financial support under the INSPIRE Program. The authors thank the Chairpersons of the Department of Studies in Zoology for the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Deepashree.

Additional information

Communicated by H.V. Carey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepashree, S., Shivanandappa, T. & Ramesh, S.R. Genetic repression of the antioxidant enzymes reduces the lifespan in Drosophila melanogaster. J Comp Physiol B 192, 1–13 (2022). https://doi.org/10.1007/s00360-021-01412-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-021-01412-7

Keywords

Navigation