Skip to main content
Log in

Mitogen-activated protein kinases contribute to temperature-induced cardiac remodelling in rainbow trout (Oncorhynchus mykiss)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Rainbow trout (Oncorhynchus mykiss) live in environments where water temperatures range between 4 °C and 20 °C. Laboratory studies demonstrate that cold and warm acclimations of male trout can have oppositional effects on cardiac hypertrophy and the collagen content of the heart. The cellular mechanisms behind temperature-induced cardiac remodelling are unclear, as is why this response differs between male and female fish. Studies with cultured trout cardiac fibroblasts suggests that collagen deposition is regulated, at least in part, by mitogen-activated protein kinase (MAPK) cell signalling pathways. We, therefore, hypothesized that temperature-dependent cardiac remodelling is regulated by these signalling pathways. To test this, male and female trout were acclimated to 18 °C (warm) in the summer and to 4 °C (cold) in the winter and the activation of MAPK pathways in the hearts were characterized and compared to that of control fish maintained at 12 °C. In addition, cardiac collagen content, cardiac morphology and the expression of gene transcripts for matrix metalloproteinases (MMP) -9, MMP-2, tissue inhibitor of matrix metalloproteinases and collagen 1α were characterized. p38 MAPK phosphorylation increased in the hearts of female fish with cold acclimation and the phosphorylation of extracellular signal-regulated kinase increased in the hearts of male fish with warm acclimation. However, there was no effect of thermal acclimation on cardiac morphology or collagen content in either male or female fish. These results indicate that thermal acclimation has transient and sex-specific effects on the phosphorylation of MAPKs but also how variable the response of the trout heart is to thermal acclimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aho E, Vornanen M (2001) Cold acclimation increases basal heart rate but decreases its thermal tolerance in rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 171:173–179

    Article  CAS  PubMed  Google Scholar 

  • Alderman SL, Klaiman KM, Deck CA, Gillis TE (2012) Effect of cold acclimation on troponin I isoform expression in striated muscle of rainbow trout. Am J Physiol 303:R168–R176

    CAS  Google Scholar 

  • Alderman SL, Lin F, Farrell AP, Kennedy CJ, Gillis TE (2017) Effects of diluted bitumen exposure on juvenile sockeye salmon: from cells to performance. Environ Toxicol Chem 36:354–360

    Article  CAS  PubMed  Google Scholar 

  • Alderman SL, Lin F, Gillis TE, Farrell AP, Kennedy CJ (2018) Developmental and latent effects of diluted bitumen exposure on early life stages of sockeye salmon (Oncorhynchus nerka). Aquat Toxicol 202:6–15

    Article  CAS  PubMed  Google Scholar 

  • Ayaz O, Howlett SE (2015) Testosterone modulates cardiac contraction and calcium homeostasis: cellular and molecular mechanisms. Biol Sex Differ 6:5

    Article  Google Scholar 

  • Barnham C, Baxter A (1902) Rate of growth of seas fishes. Sci Invest Fish Div Scot FN05:1440–2254

    Google Scholar 

  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128:191–227

    Article  CAS  PubMed  Google Scholar 

  • Brijs J, Sandblom E, Dekens E, Näslund J, Ekström A, Axelsson M (2017) Cardiac remodeling and increased central venous pressure underlie elevated stroke volume and cardiac output of seawater-acclimated rainbow trout. Am J Physiol Integr Comp Physiol 312:R31–R39

    Article  Google Scholar 

  • Campbell SE, Katwa LC (1997) Angiotensin II stimulated expression of transforming growth factor-β1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958

    Article  CAS  PubMed  Google Scholar 

  • Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B-E, Wright A, Vanderbilt C, Cobb MH (2001) MAP Kinases. Chem Rev 101:2449–2476

    Article  CAS  PubMed  Google Scholar 

  • Darrow JM, Duncan MJ, Bartke A, Bona-Gallo A, Goldman BD (1988) Influence of photoperiod and gonadal steroids on hibernation in the European hamster. J Comp Physiol A 163:339–348

    Article  CAS  PubMed  Google Scholar 

  • Devereux RB, Pikering TG, Alderman MH, Chien S, Borer JS, Laragh JH (1987) Left ventricular hypertrophy in hypertension. Prevalence and relationship to pathophysiologic variables. Hypertension 9:53

    Article  Google Scholar 

  • Dindia LA, Alderman SL, Gillis TE (2017) Novel insights into cardiac remodelling revealed by proteomic analysis of the trout heart during exercise training.

  • Duston J, Bromage N (1986) Photoperiodic mechanisms and rhythms of reproduction in the female rainbow trout. Fish Physiol Biochem 2:35–51

    Article  CAS  PubMed  Google Scholar 

  • Farrell AP (1984) A review of cardiac performance in the teleost heart: intrinsic and humoral regulation. Can J Zool 62:523–536

    Article  Google Scholar 

  • Farrell AP, Hammons AM, Graham MS (1988) Cardiac growth in rainbow trout, Salmo gairdneri. Can J Zool 66:2368–2373

    Article  Google Scholar 

  • Gamperl AK, Farrell AP (2004) Cardiac plasticity in fishes: environmental influences and intraspecific differences. J Exp Biol 207:2539–2550

    Article  CAS  PubMed  Google Scholar 

  • Goetz F, Sitar S, Rosauer D, Swanson P, Bronte CR, Dickey J, Simchick C (2012) The reproductive biology of siscowet and lean lake trout in southern lake superior. Trans Am Fisheries Soc 140:1472–1491

    Article  Google Scholar 

  • Graham AMS, Farrell AP (1989) The effect of temperature acclimation and adrenaline on the performance of a perfused trout heart. Physiol Zool 62:38–61

    Article  Google Scholar 

  • Hanley PC, Zinsmeister AR, Clements IP, Bove AA, Brown ML, Gibbons RJ (1989) Gender-related differences in cardiac response to supine exercise assessed by radionuclide angiography. J Am Coll Cardiol 13:624–629

    Article  CAS  PubMed  Google Scholar 

  • Harrison SM, Bers DM (1990) Temperature dependence of myofilament Ca2+-sensitivity of rat, guinea pig, and frog ventricular muscle. Am J Physiol 258:C274–C281

    Article  CAS  PubMed  Google Scholar 

  • Herum KM, Choppe J, Kumar A, Engler AJ, McCulloch AD (2017) Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol Biol Cell 28:1871–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivy CM, Scott GR (2015) Control of breathing and the circulation in high-altitude mammals and birds. Comp Biochem Physiol Part A 186:66–74

    Article  CAS  Google Scholar 

  • Jalil JE, Doering CW, Janicki JS, Pick R, Clark WA, Abrahams C, Weber KT (1988) Structural vs. contractile protein remodeling and myocardial stiffness in hypertrophied rat left ventricle. J Mol Cell Cardiol 20:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT (1989) Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 64:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Johansen IB, Lunde IG, Røsjø H, Christensen G, Nilsson GE, Bakken M, Øverli Ø, Rosjo H, Christensen G, Nilsson GE et al (2011) Cortisol response to stress is associated with myocardial remodeling in salmonid fishes. J Exp Biol 214:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Johnson AC, Turko AJ, Klaiman JM, Johnston EF, Gillis TE (2014) Cold acclimation alters the connective tissue content of the zebrafish (Danio rerio) heart. J Exp Biol 217:1868–1875

    PubMed  Google Scholar 

  • Johnston EF, Gillis TE (2017) Transforming growth factor beta-1 (TGF-β1) stimulates collagen synthesis in cultured rainbow trout cardiac fibroblasts. J Exp Biol 220:2645–2653

    PubMed  Google Scholar 

  • Johnston EF, Gillis TE (2018) Transforming growth factor-β1 induces differentiation of rainbow trout (Oncorhynchus mykiss) cardiac fibroblasts into myofibroblasts. J Exp Biol 221(24):189167

    Article  Google Scholar 

  • Johnston EF, Gillis TE (2020) Short-term cyclical stretch phosphorylates p38 and ERK1/2 MAPKs in cultured fibroblasts from the hearts of rainbow trout Oncorhynchus mykiss. Biol Open 9:bio049296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston EF, Cadonic IG, Craig PM, Gillis TE (2019) MicroRNA-29b knocks down collagen type I production in cultured rainbow trout (Oncorhynchus mykiss) cardiac fibroblasts. J Exp Biol 222:jeb202788

    Article  PubMed  Google Scholar 

  • Kaschina E, Unger T (2003) Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press 12:70–88

    Article  CAS  PubMed  Google Scholar 

  • Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. Curr Opin Cell Biol 279:12001–12004

    CAS  Google Scholar 

  • Keen JE, Farrell AP (1994) Maximum prolonged swimming speed and maximum cardiac performance of rainbow trout, Oncorhynchus mykiss, acclimated to two different water temperatures. Comp Biochem Physiol Part A Physiol 108:287–295

    Article  Google Scholar 

  • Keen JE, Vianzon DM, Farrell AP, Tibbits GF (1993) Thermal acclimation alters both adrenergic sensitivity and adrenoceptor density in cardiac tissue of rainbow trout. J Exp Biol 181:27–48

    Article  CAS  Google Scholar 

  • Keen AN, Fenna AJ, McConnell JC, Sherratt MJ, Gardner P, Shiels HA (2016) The dynamic nature of hypertrophic and fibrotic remodeling of the fish ventricle. Front Physiol 6:427

    Article  PubMed  PubMed Central  Google Scholar 

  • Keen AN, Klaiman JM, Shiels HA, Gillis TE (2017) Temperature-induced cardiac remodelling in fish. J Exp Biol 220:147–160

    PubMed  PubMed Central  Google Scholar 

  • Khan R, Sheppard R (2006) Fibrosis in heart disease: Understanding the role of transforming growth factor-β1 in cardiomyopathy, valvular disease and arrhythmia. Immunology 118:10–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kholodenko BN, Birtwistle MR (2009) Four-dimensional dynamics of MAPK information processing systems. Wiley Interdiscip Rev Syst Biol Med 1:28–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Ohta K, Hamaguchi A, Yukimura T, Miura K, Iwao H (1995) Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension 25:1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Kittilsen S, Schjolden J, Beitnes-Johansen I, Shaw JC, Pottinger TG, Sørensen C, Braastad BO, Bakken M, Øverli, (2009) Melanin-based skin spots reflect stress responsiveness in salmonid fish. Horm Behav 56:292–298

    Article  CAS  PubMed  Google Scholar 

  • Klaiman JM, Fenna AJ, Shiels HA, Macri J, Gillis TE (2011) Cardiac remodeling in fish: Strategies to maintain heart function during temperature change. PLoS ONE 6:e24464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaiman JM, Pyle WG, Gillis TE (2014) Cold acclimation increases cardiac myofilament function and ventricular pressure generation in trout. J Exp Biol 217:4132–4140

    PubMed  Google Scholar 

  • Kumar V, Wingfield JC, Dawson A, Ramenofsky M, Rani S, Bartell P (2010) Biological clocks and regulation of seasonal reproduction and migration in birds. Physiol Biochem Zool 83:827–835

    Article  PubMed  Google Scholar 

  • Lee AA, Dillmann WH, McCulloch AD, Villarreal FJ (1995) Angiotensin II stimulates the autocrine production of transforming growth factor-β1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol 27:2347–2357

    Article  CAS  PubMed  Google Scholar 

  • Little A, Seebacher F (2014) Thyroid hormone regulates cardiac performance during cold acclimation in zebrafish (Danio rerio). J Exp Biol 217:718–275

    CAS  PubMed  Google Scholar 

  • Mackenna DA, Dolfi F, Vuori K, Ruoslahti E (1998) Mechanotransduction through integrins extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 101:301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenna DA, Summerour SR, Villarreal FJ (2000) Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46:257–263

    Article  CAS  PubMed  Google Scholar 

  • Manso AM, Kang S, Ross RS (2009) Integrins, focal adhesions and cardiac fibroblasts. J Investig Med 57:856–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marijianowski MMH, Teeling P, Mann J, Becker AE (1995) Dilated cardiomyopathy is associated with an increase in the type I/type III collagen ratio: a quantitative assessment. J Am Coll Cardiol 25:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Merz CNB, Moriel M, Rozanski A, Klein J, Berman DS (1996) Gender-related differences in exercise ventricular function among healthy subjects and patients. Am Heart J 131:704–709

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi Y, Matsubara H, Mori Y, Murasawa S, Masaki H, Maruyama K, Tsutsumi Y, Shibasaki Y, Tanaka Y, Nakajima T et al (1999) Angiotensin II-induced transactivation of epidermal growth factor receptor regulates fibronectin and transforming growth factor-β synthesis via transcriptional and posttranscriptional mechanisms. Circ Res 84:1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. TRENDS Biochem Sci 31:268–275

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  CAS  PubMed  Google Scholar 

  • Nakane Y, Yoshimura T (2019) Photoperiodic regulation of reproduction in vertebrates. Annu Rev Anim Biosci 7:173–194

    Article  PubMed  Google Scholar 

  • Pauschinger M, Knopf D, Petschauer S, Doerner A, Poller W, Schwimmbeck PL, Kühl U, Schultheiss HP (1999) Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99:2750–2756

    Article  CAS  PubMed  Google Scholar 

  • Pottinger TG (1988) Seasonal variation in specific plasma- and target-tissue binding of androgens, relative to plasma steroid levels, in the brown trout, Salmo trutta L. Gen Comp Endocrinol 70:334–344

    Article  CAS  PubMed  Google Scholar 

  • Pramod S, Shivakumar K (2014) Mechanisms in cardiac fibroblast growth: an obligate role for Skp2 and FOXO3a in ERK1/2 MAPK-dependant regulation of p27kip1. Am J Physiol - Hear Circ Physiol 306:H844–H855

    Article  CAS  Google Scholar 

  • Rich L, Whittaker P (2005) Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz J Morphol Sci 22:97–104

    Google Scholar 

  • Rittié L (2017) Method for picrosirius red-polarization detection of collagen fibers in tissue sections. Methods Mol Biol 1627:395–407

    Article  PubMed  Google Scholar 

  • Rosenkranz S (2004) TGF-β1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    Article  CAS  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Keynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saafeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Seko Y, Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y (1999) Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125 FAK ) in cultured rat cardiac myocytes. Biochem Biophys Res Commun 259:8–14

    Article  CAS  PubMed  Google Scholar 

  • Sephton DH, Driedzic WR (1995) Low temperature acclimation decreases rates of protein synthesis in rainbow trout (Oncorhynchus mykiss) heart. Fish Physiol Biochem 14:63–69

    Article  CAS  PubMed  Google Scholar 

  • Silvipriya KS, Kumar KK, Bhat AR, Dinesh Kumar B, John A, Iakshmanan P (2015) Collagen: animal sources and biomedical application. J Appl Pharm Sci 5:123–127

    Article  Google Scholar 

  • Sinfield JK, Das A, O’Regan DJ, Ball SG, Porter KE, Turner NA (2013) P38 MAPK alpha mediates cytokine-induced IL-6 and MMP-3 expression in human cardiac fibroblasts. Biochem Biophys Res Commun 430:419–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Stoltz JF (2002) Influence of temperature variation from 5 °C to 37 °C on aggregation and deformability of erythrocytes. Clin Hemorheol Microcirc 26:1–7

    PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple interal control genes. Genome Biol 3(research0034):1

    Google Scholar 

  • Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  CAS  PubMed  Google Scholar 

  • Wenzel S, Taimor G, Piper HM, Schlüter KD (2001) Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J 15:2291–2293

    Article  CAS  PubMed  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270:2008–2011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Y.D. was supported by an Ontario Graduate Scholarship. This work in the Gillis Lab is supported by a Discovery Grant, and a Discovery Accelerator Supplement, from the National Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Gillis.

Additional information

Communicated by H.V. Carey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 1, 2 and Figs. 5, 6

Table 1 Effect of cold and warm acclimation on the collagen composition of rainbow trout (Oncorhynchus mykiss) ventricles
Table 2 Summary of initial, final, and delta quantitative measurements (Mean ± SEM) taken during sampling
Fig. 5
figure 5

Representative western blot from the cold acclimation experiment. Each different antibody corresponds to different blots that were loaded and run simultaneously. Antibodies were from cell signalling technology and are as follows: phosphorylated p38 (p-p38), total p38, phosphorylated ERK (p-ERK), total ERK. The sample group of each lane is listed along the top: E experimental; C control; numbers indicate the sampling week (E8, experimental group sampled at W8). The same internal control sample was loaded with every blot

Fig. 6
figure 6

Relative ventricular collagen content, standardized to actin, measured by western blotting in rainbow trout (Oncorhynchus mykiss) at the initial (W-1/2) and final (W8) sampling periods. (A) Cold acclimated male heart, (B) cold acclimated female heart. (C) Warm acclimated male heart, (D) warm acclimated female heart. No statistically significant differences found (N = 4–8). There are no statistically significant differences between the plotted means

.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Johnston, E.F. & Gillis, T.E. Mitogen-activated protein kinases contribute to temperature-induced cardiac remodelling in rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 192, 61–76 (2022). https://doi.org/10.1007/s00360-021-01406-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-021-01406-5

Keywords

Navigation