Skip to main content
Log in

The development of the O2-sensing system in an amphibious fish: consequences of variation in environmental O2 levels

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Proper development of the O2-sensing system is essential for survival. Here, we characterized the development of the O2-sensing system in the mangrove rivulus (Kryptolebias marmoratus), an amphibious fish that transitions between hypoxic aquatic environments and O2-rich terrestrial environments. We found that NECs formed in the gills and skin of K. marmoratus during embryonic development and that both NEC populations are retained from the embryonic stage to adulthood. We also found that the hyperventilatory response to acute hypoxia was present in embryonic K. marmoratus, indicating that functional O2-sensing pathways are formed during embryonic development. We then exposed embryos to aquatic normoxia, aquatic hyperoxia, aquatic hypoxia, or terrestrial conditions for the first 30 days of embryonic development and tested the hypothesis that environmental O2 availability during embryonic development modulates the development of the O2-sensing system in amphibious fishes. Surprisingly, we found that O2 availability during embryonic development had little impact on the density and morphology of NECs in the gills and skin of K. marmoratus. Collectively, our results demonstrate that, unlike the only other species of fish in which NEC development has been studied to date (i.e., zebrafish), NEC development in K. marmoratus is largely unaffected by environmental O2 levels during the embryonic stage, indicating that there is interspecies variation in O2-induced plasticity in the O2-sensing system of fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson JF, Ultsch GR (1987) Respiratory gas concentrations in the microhabitats of some Florida arthropods. Comp Biochem Physiol 88:585–588

    Article  Google Scholar 

  • Bavis RW (2005) Developmental plasticity of the hypoxic ventilatory response after perinatal hyperoxia and hypoxia. Respir Physiol Neurobiol 149:287–299

    Article  CAS  PubMed  Google Scholar 

  • Bejda AJ, Phelan BA, Studholme AL (1992) The effect of dissolved oxygen on the growth of young-of-the-year winter flounder, Pseudopleuronectes americanus. Environ Biol Fish 34:321–321

    Article  Google Scholar 

  • Blanchard TS, Whitehead A, Dong YW, Wright PA (2019) Phenotypic flexibility in respiratory traits is associated with improved aerial respiration in an amphibious fish out of water. J Exp Biol 222:jeb186486

    PubMed  PubMed Central  Google Scholar 

  • Burleson ML, Smatresk NJ (1990) Effects of sectioning cranial nerves IX and X on cardiovascular and ventilatory reflex responses to hypoxia and NaCN in channel catfish. J Exp Biol 154:407–420

    Article  Google Scholar 

  • Ciuhandu CS, Stevens ED, Wright PA (2005) The effect of oxygen on the growth of Oncorhynchus mykiss embryos with and without a chorion. J Fish Biol 67:1544–1551

    Article  Google Scholar 

  • Coccimiglio ML, Jonz MG (2012) Serotonergic neuroepithelial cells of the skin in developing zebrafish: morphology, innervation and oxygen-sensitive properties. J Exp Biol 215:3881–3894

    CAS  PubMed  Google Scholar 

  • Cochrane PV, Rossi GS, Tunnah L, Jonz MG, Wright PA (2019) Hydrogen sulphide toxicity and the importance of amphibious behaviour in a mangrove fish inhabiting sulphide-rich habitats. J Comp Physiol B 189:223–235

    Article  CAS  PubMed  Google Scholar 

  • Coolidge EH, Ciuhandu CS, Milsom WK (2008) A comparative analysis of putative oxygen-sensing cells in the fish gill. J Exp Biol 211:1231–1242

    Article  PubMed  Google Scholar 

  • Dejours P (1988) Respiration in water and air: Adaptations, regulation, evolution. Elsevier, New York

    Google Scholar 

  • Deslauriers D, Svendsen JC, Genz J, Wall AJ, Banktoft H, Enders RC, Anderson WG (2018) Environmental calcium and variation in yolk sac size influence swimming performance in larval lake sturgeon (Acipenser fulvescens). J Exp Biol 221:jeb164533

    Article  PubMed  Google Scholar 

  • Dunel-Erb S, Bailly Y, Laurent P (1982) Neuroepithelial cells in fish gill primary lamellae. J Appl Phsysiol 53:1342–1353

    Article  CAS  Google Scholar 

  • Flatt T (2005) The evolutionary genetics of canalization. Q Rev Biol 80:287–316

    Article  PubMed  Google Scholar 

  • Foss A, Imsland AK (2002) Compensatory growth in the spotted wolffish Anarhichas minor (Olafsen) after a period of limited oxygen supply. Aquac Res 33:1097–1101

    Article  Google Scholar 

  • Frick NT, Wright PA (2002) Nitrogen metabolism and excretion in the mangrove killifish Rivulus marmoratus I. The influence of environmental salinity and external ammonia. J Exp Biol 205:79–89

    Article  CAS  PubMed  Google Scholar 

  • Furness AI, Reznick DN, Tatarenkov A, Avise JC (2018) The evolution of diapause in Rivulus (Laimosemion). Zool J Linn Soc 184:773–790

    Article  Google Scholar 

  • Gibson DJ, Sylvester EVA, Turko AJ, Tattersall GJ, Wright PA (2015) Out of the frying pan into the air—emersion behaviour and evaporative heat loss in an amphibious mangrove fish (Kryptolebias marmoratus). Biol Lett 11:20150689

    Article  PubMed  PubMed Central  Google Scholar 

  • Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci 98:1993–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood PH (1957) Reproduction in the east African lung-fish Protopterus aethiopicus Heckel. Proc Zool Soc 130:547–567

    Article  Google Scholar 

  • Hamor T, Garside ET (1977) Size relations and yolk utilization in embryonated ova and alevins of Atlantic salmon Salmo salar L. in various combinations of temperature and dissolved oxygen. Can J Zool 55:1892–1898

    Article  CAS  PubMed  Google Scholar 

  • Harrington RW (1963) Twenty-four-hour rhythms of internal self-fertilization and of oviposition by hermaphrodites of Rivulus marmoratus. Physiol Zool 36:325–341

    Article  Google Scholar 

  • Heffell Q, Turko AJ, Wright PA (2018) Plasticity of skin water permeability and skin thickness in the amphibious mangrove rivulus Kryptolebias marmoratus. J Comp Physiol B 188:305–314

    Article  PubMed  Google Scholar 

  • Houde ED (1969) Sustained Swimming Ability of Larvae of Walleye (Stizostedion vitreum vitreum) and Yellow Perch (Perca flavescens). J Fish Res Board Can 26:1647–1659

    Article  Google Scholar 

  • Jonz MG, Nurse CA (2005) Development of oxygen sensing in the gills of zebrafish. J Exp Biol 208:1537–1549

    Article  PubMed  Google Scholar 

  • Jonz MG, Fearon IM, Nurse CA (2004) Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J Physiol 560:737–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajimura S, Aida K, Duan C (2005) Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proc Natl Acad Sci 102:1240–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamei H, Ding Y, Kajimura S, Wells M, Chiang P, Duan C (2011) Role of IGF signaling in catch-up growth and accelerated temporal development in zebrafish embryos in response to oxygen availability. Development 138:777–786

    Article  CAS  PubMed  Google Scholar 

  • Laurent P, Rouzeau J-D (1972) Afferent neural activity from pseudobranch of teleosts. Effects of pO2, pH, osmotic pressure and Na+ ions. Respir Physiol 14:307–331

    Article  CAS  PubMed  Google Scholar 

  • Levesque KD, Wright PA, Bernier NJ (2019) Cross talk without cross tolerance: effect of rearing temperature on the hypoxia response of embryonic zebrafish. Physiol Biochem Zool 92:349–364

    Article  PubMed  Google Scholar 

  • Martin KL, Carter AL (2013) Brave new propagules: terrestrial embryos in anamniotic eggs. Integr Comp Biol 53:233–247

    Article  CAS  PubMed  Google Scholar 

  • Milsom WK (2012) New insights into gill chemoreception: receptor distribution and roles in water and air breathing fish. Respr Physiol Neurobiol 184:326–339

    Article  CAS  Google Scholar 

  • Milsom WK, Burleson ML (2007) Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol 157:4–11

    Article  CAS  PubMed  Google Scholar 

  • Milsom WK, Reid SG, Ranton FT, Sundin L (2002) Extrabranchial chemoreceptors involved in respiratory reflexes in the neotropical fish Colossoma macropomum (the tambqui). J Exp Biol 205:1765–1774

    Article  CAS  PubMed  Google Scholar 

  • Mourabit S, Edenbrow M, Croft DP, Kudoh T (2011) Embryonic development of the self-fertilizing mangrove killifish Kryptolebias marmoratus. Dev Dyn 240:1694–1704

    Article  CAS  PubMed  Google Scholar 

  • Ong KJ, Stevens ED, Wright PA (2007) Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure. J Exp Biol 210:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Pan T-CF, Burggren WW (2010) Onset and early development of hypoxic ventilatory responses and branchial neuroepithelial cells in Xenopus laevis. Comp Biochem Physiol A 157:382–391

    Article  Google Scholar 

  • Pan YK, Mandic M, Zimmer AM, Perry SF (2019) Evaluating the physiological significance of hypoxic hyperventilation in larval zebrafish (Danio rerio). J Exp Biol 222:jeb204800

    Article  PubMed  Google Scholar 

  • Perry SF, Jonz MG, Gilmour KM (2009) Oxygen sensing and the hypoxic ventilatory response. In: Richards J, Farrell A, Brauner C (eds) Fish Physiology. Academic Press, London, pp 193–253

    Google Scholar 

  • Porteus CS, Abdallah SJ, Pollack J, Kumai Y, Kwong RWM, Yew HM, Milsom WK, Perry SF (2014) The role of hydrogen sulphide in the control of breathing in hypoxic zebrafish (Danio rerio). J Physiol 592:3075–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regan KS, Jonz MG, Wright PA (2011) Neuroepithelial cells and the hypoxia emersion response in the amphibious fish Kryptolebias marmoratus. J Exp Biol 214:2560–2568

    Article  PubMed  Google Scholar 

  • Robertson CE, Turko AJ, Jonz MG, Wright PA (2015) Hypercapnia and low pH induce neuroepithelial cell proliferation and emersion behaviour in the amphibious fish Kryptolebias marmoratus. J Exp Biol 218:2987–2990

    PubMed  Google Scholar 

  • Rodela TM, Wright PA (2006) Metabolic and neuroendocrine effects on diurnal urea excretion in the mangrove killifish Rivulus marmoratus. J Exp Biol 209:2704–2712

    Article  CAS  PubMed  Google Scholar 

  • Rombough P (2011) The energetics of embryonic growth. Respir Physiol Neurobiol 178:22–29

    Article  PubMed  Google Scholar 

  • Rossi GS, Wright PA (2020) Hypoxia-seeking behavior, metabolic depression and skeletal muscle function in an amphibious fish out of water. J Exp Biol 223:jeb213355

    PubMed  Google Scholar 

  • Rossi GS, Tunnah L, Martin KE, Turko AJ, Taylor DS, Currie S, Wright PA (2019) Mangrove fishes rely on emersion behavior and physiological tolerance to persist in sulfidic environments. Physiol Biochem Zool 92:316–325

    Article  PubMed  Google Scholar 

  • Rossi GS, Cochrane PV, Wright PA (2020) Fluctuating environments during early development can limit adult phenotypic flexibility: Insights from an amphibious fish. J Exp Biol 223:jeb228304

    Article  PubMed  Google Scholar 

  • Saltys HA, Jonz MG, Nurse CA (2006) Comparative study of gill neuroepithelial cells and their innervation in teleosts and Xenopus tadpoles. Cell Tissue Res 323:1–10

    Article  PubMed  Google Scholar 

  • Sayer MDJ, Davenport J (1991) Amphibious fish: why do they leave water? Rev Fish Biol 1:159–181

    Article  Google Scholar 

  • Shakarchi K, Zachar PC, Jonz MG (2013) Serotonergic and cholinergic elements of the hypoxic ventilatory response in developing zebrafish. J Exp Biol 216:869–880

    CAS  PubMed  Google Scholar 

  • Stamps JA, Frankenhuis WE (2016) Bayesian models of development. Trends Ecol Evol 31:260–268

    Article  PubMed  Google Scholar 

  • Tatarenkov A, Ring BC, Elder JF, Bechler DL, Avise JC (2010) Genetic composition of laboratory stocks of the self-fertilizing fish Kryptolebias marmoratus: a valuable resource for experimental research. PLoS ONE 5:e12863

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor DS (2012) Twenty-four years in the mud: what have we learned about the natural history and ecology of the mangrove rivulus, Kryptolebias marmoratus? Integr Comp Biol 52:724–736

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor DS, Turner BJ, Davis WP, Chapman BB (2008) A novel terrestrial fish habitat inside emergent logs. Am Nat 171:263–266

    Article  PubMed  Google Scholar 

  • Turko AJ, Cooper CA, Wright PA (2012) Gill remodelling during terrestrial acclimation reduces aquatic respiratory function of the amphibious fish Kryptolebias marmoratus. J Exp Biol 215:3973–3980

    CAS  PubMed  Google Scholar 

  • Turko AJ, Robertson CE, Bianchini K, Freeman M, Wright PA (2014) The amphibious fish Kryptolebias marmoratus uses different strategies to maintain oxygen delivery during aquatic hypoxia and air exposure. J Exp Biol 217:3988–3995

    PubMed  Google Scholar 

  • Vulesevic B, Perry SF (2006) Developmental plasticity of ventilatory control in zebrafish, Danio rerio. Respir Physiol Neurobiol 154:396–405

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183:1654–1655

    Article  CAS  PubMed  Google Scholar 

  • Ward DL, Maughan OE, Bonar SA (2002) Effects of temperature, fish length, and exercise on swimming performance of age-0 flannelmouth sucker. Trans Am Fish Soc 131:492–497

    Article  Google Scholar 

  • Wells MW, Turko AJ, Wright PA (2015) Fish embryos on land: terrestrial embryo deposition lowers oxygen uptake without altering growth or survival in the amphibious fish Kryptolebias marmoratus. J Exp Biol 218:3249–3256

    Article  PubMed  Google Scholar 

  • Wood AT, Clark TD, Elliott NG, Frappell PB, Andrewartha SJ (2019) Physiological effects of dissolved oxygen are stage-specific in incubating Atlantic salmon (Salmo salar). J Comp Physiol B 189:109–120

    Article  CAS  PubMed  Google Scholar 

  • Wright PA (2012) Environmental physiology of the mangrove rivulus, Kryptolebias marmoratus, a cutaneously breathing fish that survives for weeks out of water. Integr Comp Biol 52:792–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright WG, Raymond JA (1978) Air-breathing in a California sculpin. J Exp Zool 203:171–176

    Article  Google Scholar 

  • Zaccone G, Mauceri A, Maisano M, Giannetto A, Parrino V, Fasulo S (2007) Innervation and neurotransmitter localization in the lung of the nile bichir Polypterus bichir bichir. Anat Rec 290:1166–1177

    Article  CAS  Google Scholar 

  • Zaccone G, Lauriano ER, Kuciel M, Capillo G, Pergolizzi S, Alesci A, Ishimatsu A, Ip YK, Icardo JM (2017) Identification and distribution of neuronal nitric oxide synthase and neurochemical markers in the neuroepithelial cells of the gill and the skin in the giant mudskipper, Periophthalmodon schlosseri. Zoology 125:41–52

    Article  PubMed  Google Scholar 

  • Zaccone G, Maina J, Germanà A, Montalbano G, Capillo G, Aragona L, Kuciel MJ, Lauriano ER, Icardo JM (2019) First demonstration of the neuroepithelial cells and their chemical code in the accessory respiratory organ and the gill of the sharptooth catfish, Clarias gariepinus : A preliminary study. Acta Zool 100:160–166

    Article  Google Scholar 

  • Zaccone G, Cupello C, Capillo G, Kuciel M, Nascimento ALR, Gopesh A, Germanà A, Spanò GP, Guerrera MC, Aragona M, Crupi R, Icardo JM, Lauriano ER (2020) Expression of acetylcholine- and G protein coupled muscarinic receptor in the neuroepithelial cells (NECs) of the obligated air-breathing fish, Arapaima gigas (Arapaimatidae: Teleostei). Zoology 139:125755

    Article  PubMed  Google Scholar 

  • Zachar PC, Jonz MG (2012) Neuroepithelial cells of the gill and their role in oxygen sensing. Respir Physiol Neurobiol 184:301–308

    Article  CAS  PubMed  Google Scholar 

  • Zachar PC, Pan W, Jonz MG (2017) Characterization of ion channels and O2 sensitivity in gill neuroepithelial cells of the anoxia-tolerant goldfish (Carassius auratus). J Neurophysiol 118:3014–3023

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Andreas Heyland for the use of his microscope, Drs. Nicholas Bernier and Beren Robinson for advice on study design and data interpretation, and Nicole Carpenter, Mike Davies, and Matt Cornish for assistance with animal care.

Funding

Funding was provided by Natural Sciences and Engineering Research Council of Canada (NSERC) and Ontario Graduate scholarships to P.V.C. and a NSERC discovery grant to P.A.W.

Author information

Authors and Affiliations

Authors

Contributions

PVC and PAW conceived the study and designed the experiments. PVC conducted the experiments, analyzed the data, and wrote the draft manuscript. MGJ trained PVC on immunohistochemical techniques and aided in the interpretation of images. All authors reviewed and revised the manuscript, and gave final approval for publication.

Corresponding author

Correspondence to Paige V. Cochrane.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Additional information

Communicated by B. Pelster.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3502 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cochrane, P.V., Jonz, M.G. & Wright, P.A. The development of the O2-sensing system in an amphibious fish: consequences of variation in environmental O2 levels. J Comp Physiol B 191, 681–699 (2021). https://doi.org/10.1007/s00360-021-01379-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-021-01379-5

Keywords

Navigation