Skip to main content
Log in

Investigation of shock–acoustic-wave interaction in transonic flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side of the wing. Theories assume that this unsteadiness is driven by an acoustic feedback loop of disturbances in the flow field downstream of the shock wave whose upstream propagating part is generated by acoustic waves. Therefore, in this study, first variations in the sound pressure level of the airfoil’s trailing-edge noise during a buffet cycle, which force the shock wave to move upstream and downstream, are detected, and then, the sensitivity of the shock wave oscillation during buffet to external acoustic forcing is analyzed. Time-resolved standard and tomographic particle-image velocimetry (PIV) measurements are applied to investigate the transonic buffet flow field over a supercritical DRA 2303 airfoil. The freestream Mach number is \(M_{\infty } = 0.73\), the angle of attack is \(\alpha = {3.5}^{\circ }\), and the chord-based Reynolds number is \(Re_c = 1.9\times 10^6\). The perturbed Lamb vector field, which describes the major acoustic source term of trailing-edge noise, is determined from the tomographic PIV data. Subsequently, the buffet flow field is disturbed by an artificially generated acoustic field, the acoustic intensity of which is comparable to the Lamb vector that is determined from the PIV data. The results confirm the hypothesis that buffet is driven by an acoustic feedback loop and show the shock wave oscillation to directly respond to external acoustic forcing. That is, the amplitude modulation frequency of the artificial acoustic perturbation determines the shock oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alshabu A, Olivier H (2008) Unsteady wave phenomena on a supercritical airfoil. AIAA J 46:2066–2073

    Article  Google Scholar 

  • Amecke J (1985) Direkte Berechnung von Wandinterferenzen und Wandadaption bei zweidimensionaler Strömung in Windkanälen mit geschlossenen Wänden. Technical report, DFVLR-FB, pp 85–62

  • Behler GK, Bernhard A (1998) Measuring method to derive the lumped elements of the loudspeaker thermal equivalent circuit. In: Audio engineering society convention 104

  • Binion TW (1988) Potentials for Pseudo-Reynolds Number Effects. In: Reynolds number effects in transonic flow. Technical report, AGARD 303, sec. 4

  • Crouch J, Garbaruk A, Magidov D, Travin A (2009) Origin of transonic buffet on aerofoils. J Fluid Mech 628:357–369

    Article  MathSciNet  MATH  Google Scholar 

  • Deck S (2005) Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J 43(7):1556–1566

    Article  Google Scholar 

  • Ewert R, Schröder W (2003) Acoustic perturbation equations based on flow decomposition via source filtering. J Comput Phys 188:365–398

    Article  MathSciNet  MATH  Google Scholar 

  • Feldhusen A, Hartmann A, Klaas M, Schröder W (2013) Impact of alternating trailing-edge noise on buffet flows. AIAA 2013:3028

    Google Scholar 

  • Feldhusen A, Klaas M, Schröder W (2015) High-speed tomographic PIV measurements of buffet flow over a supercritical airfoil with artificially introduced sound waves. In: 11th international symposium on particle image velocimetry—PIV15 Santa Barbara, California

  • Finke K (1975) Unsteady shock–wave boundary-layer interaction on profiles in transonic flows. Technical report, AGARD-CPP-168, Paper No. 28

  • Garnier E, Deck S (2010) Large-Eddy simulation of transonic buffet over a supercritical airfoil. In: Direct and large-eddy simulation VII, ERCOFTAC Series, vol 13. Springer, Berlin.

  • Giannelis N, Vio G, Levinski O (2017) A review of recent developments in the understanding of transonic shock buffet. Prog Aerosp Sci.https://doi.org/10.1016/j.paerosci.2017.05.004

  • Guntermann P (1992) Entwicklung eines Profilmodells mit variabler Geometrie zur Untersuchung des Transitionsverhaltens in kompressibler Unterschallströmung. Ph.D. thesis, RWTH Aachen University

  • Hartmann A, Klaas M, Schröder W (2012) Time-resolved stereo piv measurements of shock-boundary layer interaction on a supercritical airfoil. Exp Fluids 52:591–604

    Article  Google Scholar 

  • Hartmann A, Klaas M, Schröder W (2013a) Coupled airfoil heave/pitch oscillations at buffet flow. AIAA J 51(7):1542–1552

    Article  Google Scholar 

  • Hartmann A, Feldhusen A, Schröder W (2013b) On the interaction of shock waves and sound waves in transonic buffet flow. Phys Fluids 25:026101

    Article  Google Scholar 

  • Hermes V, Klioutchnikov I, Olivier H (2012) Numerical investigation of unsteady wave phenomena for transonic airfoil flow. Aerosp Sci Technol 25:224–233

    Article  Google Scholar 

  • Jacquin L, Molton P, Deck S, Maury B, Soulevant D (2009) Experimental study of shock oscillation over a transonic supercritical profile. AIAA J 47(9):1985–1994

    Article  Google Scholar 

  • Lee BKH (1990) Oscillatory shock motion caused by transonic shock boundary layer interaction. AIAA J 28(5):942–944

    Article  Google Scholar 

  • Lee BKH (2001) Self-sustained shock oscillations on airfoils at transonic speeds. Prog Aerosp Sci 37:147–196

    Article  Google Scholar 

  • Melling A (1986) Seeding gas flows for laser anemometry. Technical report, AGARD CP-399: Conference on advanced instrumentation for aero engine components, pp 8.1–8.11

  • Melling A (1997) Tracer particles and seeding for paticle image velocimetry. Meas Sci Technol 8:1406–1416

    Article  Google Scholar 

  • Roidl B, Meinke M, Schröder W (2011) Zonal RANS-LES computation of transonic airfoil flow. AIAA 2011:3974

    Google Scholar 

  • Roos F (1985) The buffet pressure field of a high-aspect-ratio swept wing. AIAA 1985:1609

    Google Scholar 

  • Rossiter JE (1964) Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Technical report, Aero REs Counc R&M, No. 3438

  • Sartor F, Mettot C, Sipp D (2015) Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile. AIAA J 53(7):1374–1980

    Article  Google Scholar 

  • Schröder A, Herr M, Lauke T, Dierksheide U (2005) Measurements of trailing-edge-noise sources by means of time-resolved PIV. In: 6th International symposium on particle image velocimetry, vol 2, pp 1–8

  • Stanewsky E, Basler D (1990) Experimental investigation of buffet onset and penetration on a supercritical airfoil at transonic speeds. Technical report, AGARD CP-483, Paper 4

  • Voss R (1988) Über die Ausbreitung akustischer Störungen in transsonischen Strömungsfeldern von Tragflügeln. Technical report, DFVLR 88-13, Institut für Aeroelastik, Georg-August-Universität Göttingen

  • Wieneke B (2008) Volume self-calibration for 3D particle image velocimetry. Exp Fluids 45:549–556

    Article  Google Scholar 

  • Xiao Q, Tsai M, Liu F (2006) Numerical study of transonic buffet on a supercritical airfoil. AIAA J 44(3):621–628

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Deutsche Forschungsgemeinschaft within the research project ’Numerical and Experimental Analysis of Shock Oscillations at the Shock–Boundary-Layer Interaction in Transonic Flow’ (DFG SCHR 309/40-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Feldhusen-Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldhusen-Hoffmann, A., Statnikov, V., Klaas, M. et al. Investigation of shock–acoustic-wave interaction in transonic flow. Exp Fluids 59, 15 (2018). https://doi.org/10.1007/s00348-017-2466-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2466-z

Navigation