Skip to main content
Log in

In-flight active wave cancelation with delayed-x-LMS control algorithm in a laminar boundary layer

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This manuscript demonstrates the first successful application of the delayed-x-LMS (dxLMS) control algorithm for TS-wave cancelation. Active wave cancelation of two-dimensional broadband Tollmien–Schlichting (TS) disturbances is performed with a single DBD plasma actuator. The experiments are conducted in flight on the pressure side of a laminar flow wing glove, mounted on a manned glider. The stability properties of the controller are investigated in detail with experimental flight data, DNS and stability analysis of the boundary layer. Finally, a model-free approach for dxLMS operation is introduced to operate the controller as a ‘black-box’ system, which automatically adjusts the controller settings based on a group speed measurement of the disturbance wave packets. The modified dxLMS controller is operated without a model and is able to adapt to varying conditions that may occur during flight in atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Bagheri S, Brandt L, Henningson DS (2009) Input-output analysis, model reduction and control of the flat-plate boundary layer. J Fluid Mech 620(1):263–298

    Article  MathSciNet  MATH  Google Scholar 

  • Brynjell-Rahkola M (2015) Global stability analysis of three-dimensional boundary-layer flows. Lic. thesis, KTH, Stockholm

  • Dadfar R, Semeraro O, Hanifi A, Henningson DS (2013) Output feedback control of flow on a flat plate past a leading edge using plasma actuators. AIAA J 51(9):2192–2207

    Article  Google Scholar 

  • Duchmann A (2012) Boundary-layer stabilization with dielectric barrier discharge plasmas for free-flight application. Ph.D. thesis, TU Darmstadt

  • Duchmann A, Simon B, Tropea C, Grundmann S (2014) Dielectric barrier discharge plasma actuators for in-flight transition delay. AIAA J 52(2):358–367

    Article  Google Scholar 

  • Elliott S, Nelson P (1993) Active noise control. Signal Process Mag IEEE 10(4):12–35

    Article  Google Scholar 

  • Fabbiane N, Simon B, Fischer F, Grundmann S, Bagheri S, Henningson DS (2015) On the role of adaptivity for Robust Laminar-flow control. J Fluid Mech 767:R1

    Article  Google Scholar 

  • Fischer PF, Lottes JS, Kerkemeier SG (2008) Nek5000 - open source spectral element cfd solver. http://nek5000.mcs.anl.gov

  • Grundmann S, Tropea C (2008) Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators. Exp Fluid 44(5):795–806

    Article  Google Scholar 

  • Gad-el Hak M (2000) Flow control: passive, active, and reactive flow management. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hansen C, Snyder S (1996) Active control of noise and vibration. CRC Press, Boca Raton

    Google Scholar 

  • Joslin R (1998) Aircraft laminar flow control 1. Ann Rev Fluid Mech 30(1):1–29

    Article  Google Scholar 

  • Juniper MP, Hanifi A, Theofilis V (2014) Modal stability theorylecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl Mech Rev 66(2):024804

    Article  Google Scholar 

  • Kim HS, Park Y (1998) Delayed-x lms algorithm: an efficient ANC algorithm utilizing robustness of cancellation path model. J Sound Vib 212(5):875–887

    Article  Google Scholar 

  • Kotsonis M, Giepman R, Hulshoff S, Veldhuis L (2013) Numerical study of the control of Tollmien-Schlichting waves using plasma actuators. AIAA J 51(10):2353–2364

    Article  Google Scholar 

  • Kotsonis M, Shukla RK, Pröbsting S (2015) Control of natural Tollmien-Schlichting waves using dielectric barrier discharge plasma actuators. Int J Flow Control 7(1–2):37–54

    Article  Google Scholar 

  • Kriegseis J, Duchmann A, Tropea C, Grundmann S (2013) On the classification of dielectric barrier discharge plasma actuators: a comprehensive performance evaluation study. J Appl Phy 114(5):053,301

    Article  Google Scholar 

  • Kriegseis J, Schwarz C, Tropea C, Grundmann S (2013) Velocity-information-based force-term estimation of dielectric-barrier discharge plasma actuators. J Phy D Appl Phy 46(5):055,202

    Article  Google Scholar 

  • Kriegseis J, Simon B, Grundmann S (2016) Towards in- fight applications? A review on dielectric barrier discharge-based boundary-layer control. Appl Mech Rev 68(2)

  • Kuo SM, Morgan D (1995) Active noise control systems: algorithms and DSP implementations. Wiley, Hoboken

    Google Scholar 

  • Kurz A, Goldin N, King R, Tropea C, Grundmann S (2013) Hybrid transition control approach for plasma actuators. Exp Fluid 54(11):1–4

    Article  Google Scholar 

  • Kurz A, Simon B, Tropea C, Grundmann S (2014) Active wave cancelation using plasma actuators in flight. In: 52nd Aerospace Sciences Meeting, AIAA SciTech. American Institute of Aeronautics and Astronautics

  • Li Y, Gaster M (2006) Active control of boundary-layer instabilities. J Fluid Mech 550:185–206

    Article  MATH  Google Scholar 

  • Liepmann H, Brown G, Nosenchuck D (1982) Control of laminar-instability waves using a new technique. J Fluid Mech 118:187–200

    Article  Google Scholar 

  • Liepmann H, Nosenchuck D (1982) Active control of laminar-turbulent transition. J Fluid Mech 118:201–204

    Article  Google Scholar 

  • Milling RW (1981) Tollmien–schlichting wave cancellation. Phy Fluid (1958–1988) 24(5):979–981

    Article  Google Scholar 

  • Morino L, Kuot CC (1974) Subsonic potential aerodynamics for complex configurations: a general theory. AIAA J 12(2):191–197

    Article  MATH  Google Scholar 

  • Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comp Phy 54(3):468–488

    Article  MathSciNet  MATH  Google Scholar 

  • Peltzer I, Pätzold A, Nitsche W (2009) In-flight experiments for delaying laminar—turbulent transition on a laminar wing glove. Proc Inst Mech Eng Part G J Aerosp Eng 223(6):619–626

    Article  Google Scholar 

  • Reeh AD (2014) Natural laminar flow airfoil behavior in cruise flight through atmospheric turbulence. Ph.D. thesis, TU Darmstadt

  • Reeh AD, Tropea C (2015) Behaviour of a natural laminar flow aerofoil in flight through atmospheric turbulence. J Fluid Mech 767:394–429

    Article  MathSciNet  Google Scholar 

  • Saric WS, Reed HL, Kerschen EJ (2002) Boundary-layer receptivity to freestream disturbances. Ann Rev Fluid Mech 34(1):291–319

    Article  MathSciNet  MATH  Google Scholar 

  • Semeraro O, Bagheri S, Brandt L, Henningson DS (2013) Transition delay in a boundary layer flow using active control. J Fluid Mech 731(9):288–311

    Article  MATH  Google Scholar 

  • Simon B, Nemitz T, Rohlfing J, Fischer F, Mayer D, Grundmann S (2015) Active flow control of laminar boundary layers for variable flow conditions. Int J Heat Fluid Flow 56:344–354

    Article  Google Scholar 

  • Simon B, Schnabel P, Grundmann S (2016) IR measurements for quantification of laminar boundary layer stabilization with dbd plasma actuators. In: New results in numerical and experimental fluid mechanics X. Springer

  • Snyder S, Hansen C (1990) The influence of transducer transfer functions and acoustic time delays on the implementation of the LMS algorithm in active noise control systems. J Sound Vib 141(3):409–424

    Article  Google Scholar 

  • Sturzebecher D, Nitsche W (2003) Active cancellation of Tollmien–Schlichting instabilities on a wing using multi-channel sensor actuator systems. Int J Heat Fluid Flow 24:572–583

    Article  Google Scholar 

  • Thomas AS (1983) The control of boundary-layer transition using a wave-superposition principle. J Fluid Mech 137:233–250

    Article  Google Scholar 

  • Wang JJ, Choi KS, Feng LH, Jukes TN, Whalley RD (2013) Recent developments in dbd plasma flow control. Prog Aerosp Sci 62:52–78

    Article  Google Scholar 

  • Weismüller (2012) A new approach to aerodynamic performance of aircraft under turbulent atmospheric conditions. Ph.D. Thesis, TU Darmstadt

Download references

Acknowledgments

This work was supported by the German research foundation (DFG) under the Grant No.GR3524/4-1. Simulations have been performed at the National Supercomputer Centre (NSC) with computer time granted by the Swedish National Infrastructure for Computing (SNIC). We also wish to thank Jens Rohlfing from Fraunhofer LBF (Darmstadt) for the fruitful discussions. Finally we appreciate the support of our student and flight test pilot Tobias Hofmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, B., Fabbiane, N., Nemitz, T. et al. In-flight active wave cancelation with delayed-x-LMS control algorithm in a laminar boundary layer. Exp Fluids 57, 160 (2016). https://doi.org/10.1007/s00348-016-2242-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2242-5

Keywords

Navigation