Skip to main content
Log in

Design and testing of temperature tunable de Laval nozzles for applications in gas-phase reaction kinetics

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A series of three de Laval nozzles initially designed to generate uniform supersonic flows in helium at 23 and 36 K and in argon at 50 K have been used with either pure nitrogen or mixtures of nitrogen with helium or argon in order to make a sequence of pulsed supersonic flows working at different temperatures. For this, a computer homemade program has been used to design de Laval nozzles contours for gas mixtures in order to determine the theoretical pressure P and temperature T in these supersonic flows. Spatial evolution of T along the flow axis downstream of the nozzle exit has been characterized with a fast response Pitot tube instrument newly developed. Twenty-eight different gas mixture conditions have been tested, indicating a very good agreement with the corresponding calculated flow conditions. The length of uniformity ΔL of the supersonic flows have been found to be >30 cm in more than 80 % of the situations and >50 cm for more than 50 % of the tested conditions. Fine temperature tunability was achieved in the range 22–107 K with very small fluctuations of the mean temperature along ΔL. Advantages and limits of these new developments for studies of gas-phase reaction kinetics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. With respect to the rotating disk.

References

  • Abeysekera C, Zack LN, Park GB, Joalland B, Oldham JM, Prozument K, Ariyasingha NM, Sims IR, Field RW, Suits AG (2014) A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics. J Chem Phys 141(21):14203

    Article  Google Scholar 

  • Abeysekera C, Joalland B, Ariyasingha N, Zack LN, Sims IR, Field RW, Suits AG (2015) Product branching in the low temperature reaction of CN with propyne by chirped-pulse microwave spectroscopy in a uniform supersonic flow. J Phys Chem Lett 6(9):1599–1604

    Article  Google Scholar 

  • Ahedo E (2011) Plasmas for space propulsion. Plasma Phys Control Fusion 53(12):124037

    Article  Google Scholar 

  • Allimant A, Planche MP, Bailly Y, Dembinski L, Coddet C (2009) Progress in gas atomization of liquid metals by means of a De Laval nozzle. Powder Technol 190(1–2):79–83

    Article  Google Scholar 

  • Antiñolo M, Agundez M, Jiménez E, Ballesteros B, Canosa A, El Dib G, Albaladejo J, Cernicharo J (2016) Reactivity of OH and CH3OH between 22 and 64 K: modelling the gas phase production of CH3O in Barnard 1B. Astrophys J 823(1):25

    Article  Google Scholar 

  • Atkinson DB, Smith MA (1995) Design and characterization of pulsed uniform supersonic expansions for chemical applications. Rev Sci Instrum 66(9):4434–4446

    Article  Google Scholar 

  • Barcelo C, Liberati S, Visser M (2003) Towards the observation of Hawking radiation in Bose–Einstein condensates. Int J Mod Phys A 18(21):3735–3745

    Article  MathSciNet  MATH  Google Scholar 

  • Belan M, De Ponte S, Tordella D, Massaglia S, Mignone A, Bodenschatz E, Ferrari A (2011) Hydrodynamics of hypersonic jets: experiments and numerical simulations. Astrophys Space Sci 336(1):9–14

    Article  Google Scholar 

  • Benidar A, Georges R, Le Doucen R, Boissoles J, Hamon S, Canosa A, Rowe BR (2000) Uniform supersonic expansion for FTIR absorption spectroscopy: the ν(5) band of (NO)2 at 26 K. J Mol Spectrosc 199(1):92–99

    Article  Google Scholar 

  • Blim A, Jarecki L, Blonski S (2014) Modeling of pneumatic melt drawing of polypropylene super-thin fibers in the Laval nozzle. Bull Pol Acad Sci Tech Sci 62(1):43–54

    Google Scholar 

  • Canosa A, Goulay F, Sims IR, Rowe BR (2008) Gas phase reactive collisions at very low temperature: recent experimental advances and perspectives. In: Smith IWM (ed) Low temperatures and cold molecules. Imperial College Press, London, pp 55–120

    Chapter  Google Scholar 

  • Caravan RL, Shannon RJ, Lewis T, Blitz MA, Heard DE (2015) Measurements of rate coefficients for reactions of OH with ethanol and propan-2-ol at very low temperatures. J Phys Chem A 119(28):7130–7137

    Article  Google Scholar 

  • Daugey N, Caubet P, Retail B, Costes M, Bergeat A, Dorthe G (2005) Kinetic measurements on methylidyne radical reactions with several hydrocarbons at low temperatures. Phys Chem Chem Phys 7(15):2921–2927

    Article  Google Scholar 

  • Du CM, Li HX, Zhang L, Wang J, Huang DW, Xiao MD, Cai JW, Chen YB, Yan HL, Xiong Y, Xiong Y (2012) Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge. Int J Hydrog Energy 37(10):8318–8329

    Article  Google Scholar 

  • Dupeyrat G, Marquette JB, Rowe BR (1985) Design and testing of axisymmetric nozzles for ion molecule reaction studies between 20 K and 160 K. Phys Fluids 28(5):1273–1279

    Article  Google Scholar 

  • Gómez-Martín JC, Caravan RL, Blitz MA, Heard DE, Plane JMC (2014) Low temperature kinetics of the CH3OH+ OH reaction. J Phys Chem A 118(15):2693–2701

    Article  Google Scholar 

  • Hamon S, Le Picard SD, Canosa A, Rowe BR, Smith IWM (2000) Low temperature measurements of the rate of association to benzene dimers in helium. J Chem Phys 112(10):4506–4516

    Article  Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    MATH  Google Scholar 

  • James PL, Sims IR, Smith IWM (1997) Total and state-to-state rate coefficients for rotational energy transfer in collisions between NO(X2Π) and He at temperatures down to 15 K. Chem Phys Lett 272(5–6):412–418

    Article  Google Scholar 

  • Jarecki L, Blonski S, Zachara A (2015) Modeling of pneumatic melt drawing of poly-l-lactide fibers in the Laval Nozzle. Ind Eng Chem Res 54(43):10796–10810

    Article  Google Scholar 

  • Jen TC, Pan LM, Li LJ, Chen QH, Cui WZ (2006) The acceleration of charged nano-particles in gas stream of supersonic de-Laval-type nozzle coupled with static electric field. Appl Therm Eng 26(5–6):613–621

    Article  Google Scholar 

  • Jiménez E, Ballesteros B, Canosa A, Townsend TM, Maigler FJ, Napal V, Rowe BR, Albaladejo J (2015) Development of a pulsed uniform supersonic gas expansion system based on an aerodynamic chopper for gas phase reaction kinetics studies at ultra-low temperatures. Rev Sci Instrum 86(4):045108

    Article  Google Scholar 

  • Jiménez E, Antiñolo M, Ballesteros B, Canosa A, Albaladejo J (2016) First evidence of the dramatic enhancement of the reactivity of methyl formate (HC(O)OCH3) with OH at temperatures of the interstellar medium: a gas-phase kinetic study between 22 K and 64 K. Phys Chem Chem Phys 18(3):2183–2191

    Article  Google Scholar 

  • Jung JH, Kim SB, Kim SS (2008) Nanoparticle generation using corona discharge ions from a supersonic flow in low pressure. Powder Technol 185(1):58–66

    Article  MathSciNet  Google Scholar 

  • Kanaoka C, Chutmanop J, Kitada M (2001) Inertial separation of ultrafine particles by a Laval nozzle type supersonic impactor. Powder Technol 118(1–2):188–192

    Article  Google Scholar 

  • Kim YJ, Wyslouzil BE, Wilemski G, Wolk J, Strey R (2004) Isothermal nucleation rates in supersonic nozzles and the properties of small water clusters. J Phys Chem A 108(20):4365–4377

    Article  Google Scholar 

  • Kudryavtsev Y, Ferrer R, Huyse M, Van den Bergh P, Van Duppen P (2013) The in-gas-jet laser ion source: resonance ionization spectroscopy of radioactive atoms in supersonic gas jets. Nucl Instrum Methods Phys Res B 297:7–22

    Article  Google Scholar 

  • Le Picard SD, Tizniti M, Canosa A, Sims IR, Smith IWM (2010) The Thermodynamics of the elusive HO3 radical. Science 328(5983):1258–1262

    Article  Google Scholar 

  • Lee S, Hoobler RJ, Leone SR (2000) A pulsed Laval nozzle apparatus with laser ionization mass spectrometry for direct measurements of rate coefficients at low temperatures with condensable gases. Rev Sci Instrum 71(4):1816–1823

    Article  Google Scholar 

  • Lemos N, Lopes N, Dias JM, Viola F (2009) Design and characterization of supersonic nozzles for wide focus laser-plasma interactions. Rev Sci Instrum 80(10):103301

    Article  Google Scholar 

  • Li ZD, Zhang GQ, Li Z, Zhang Y, Xu WY (2008) Simulation of gas flow field in Laval nozzle and straight nozzle for powder metallurgy and spray forming. J Iron Steel Res Int 15(6):44–47

    Article  Google Scholar 

  • Man HC, Duan J, Yue TM (1999) Analysis of the dynamic characteristics of gas flow inside a laser cut kerf under high cut-assist gas pressure. J Phys D 32(13):1469–1477

    Article  Google Scholar 

  • Michel R (1962) Aérodynamique: Couches limites turbulentes et calculs pratiques des couches limites en fluide compressible. Ecole Nationale de l’Aéronautique (ENSA), Paris

    Google Scholar 

  • Murakami A, Miyazawa J, Suzuki C, Yamada I, Morisaki T, Sakamoto R, Yamada H (2012) Fueling characteristics of supersonic gas puffing applied to large high-temperature plasmas in the large helical device. Plasma Phys Control Fusion 54(5):055006

    Article  Google Scholar 

  • Oldham JM, Abeysekera C, Joalland B, Zack LN, Prozument K, Sims IR, Park GB, Field RW, Suits AG (2014) A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system. J Chem Phys 141(15):54202

    Article  Google Scholar 

  • Opher M, Liewer PC, Velli M, Bettarini L, Gombosi TI, Manchester W, DeZeeuw DL, Toth G, Sokolov I (2004) Magnetic effect at the edge of the solar system: MHD instabilities, the De Laval nozzle effect and an extended jet. Astrophys J 611(1):575–586

    Article  Google Scholar 

  • Owen JM, Sherman FS (1952) Design and testing of a Mach 4 axially symmetric nozzle for rarefied gas flows. Engineering Project Report: He 150-104. University of California Berkeley

  • Rebrion C, Marquette JB, Rowe BR (1992) CRESU measurements of ion-molecule reactions down to 20 K. In: Bohme DK, Herbst E, Kaifu N, Saito S (eds) Proceeding of the symposium no 228, Pacifichem 89, “chemistry and spectroscopy of interstellar molecules”. University of Tokyo Press, Honolulu, pp 173–178

    Google Scholar 

  • Reponen M, Moore ID, Pohjalainen I, Kessler T, Karvonen P, Kurpeta J, Marsh B, Piszczek S, Sonnenschein V, Aysto J (2011) Gas jet studies towards an optimization of the IGISOL LIST method. Nucl Instrum Methods Phys Res A 635(1):24–34

    Article  Google Scholar 

  • Rowe BR, Rebrion C (1991) Recent laboratory works toward astrochemistry. Trends Chem Phys 1:367–389

    Google Scholar 

  • Rowe BR, Marquette JB, Dupeyrat G, Ferguson EE (1985) Reactions of He+ and N+ ions with several molecules at 8 K. Chem Phys Lett 113(4):403–406

    Article  Google Scholar 

  • Sabbah H, Biennier L, Sims IR, Rowe BR, Klippenstein SJ (2010) Exploring the role of PAHs in the formation of soot: pyrene dimerization. J Phys Chem Lett 1(17):2962–2967

    Article  Google Scholar 

  • Sánchez-González R, Eveland WD, West NA, Mai CLN, Bowersox RDW, North SW (2014) Low-temperature collisional quenching of NO A2Σ+(v′ = 0) by NO(X2Π) and O2 between 34 and 109 K. J Chem Phys 141(7):074313

    Article  Google Scholar 

  • Schlappi B, Litman JH, Ferreiro JJ, Stapfer D, Signorell R (2015) A pulsed uniform Laval expansion coupled with single photon ionization and mass spectrometric detection for the study of large molecular aggregates. Phys Chem Chem Phys 17(39):25761–25771

    Article  Google Scholar 

  • Shannon RJ, Taylor S, Goddard A, Blitz MA, Heard DE (2010) Observation of a large negative temperature dependence for rate coefficients of reactions of OH with oxygenated volatile organic compounds studied at 86–112 K. Phys Chem Chem Phys 12(41):13511–13514

    Article  Google Scholar 

  • Shannon RJ, Blitz MA, Goddard A, Heard DE (2013) Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling. Nat Chem 5(9):745–749

    Article  Google Scholar 

  • Si CR, Zhang XJ, Wang JB, Li YJ (2014) Design and evaluation of a Laval-type supersonic atomizer for low-pressure gas atomization of molten metals. Int J Miner Metall Mater 21(6):627–635

    Article  Google Scholar 

  • Sims IR, Queffelec JL, Defrance A, Rebrion-Rowe C, Travers D, Bocherel P, Rowe BR, Smith IWM (1994) Ultra-low temperature kinetics of neutral-neutral reactions: the technique, and results for the reactions CN + O2 down to 13 K and CN + NH3 down to 25 K. J Chem Phys 100(6):4229–4241

    Article  Google Scholar 

  • Sleiman C, González S, Klippenstein SJ, Talbi D, El Dib G, Canosa A (2016) Pressure dependent low temperature kinetics for CN + CH3CN: competition between chemical reaction and van der Waals complex formation. Phys Chem Chem Phys 18(22):15118–15132

    Article  Google Scholar 

  • Smith IWM, Barnes PW (2013) Advances in low temperature gas-phase kinetics. Annu Rep Prog Chem Sect C 109:140–166

    Article  Google Scholar 

  • Soukhanovskii VA, Kugel HW, Kaita R, Majeski R, Roquemore AL (2004) Supersonic gas injector for fueling and diagnostic applications on the national spherical torus experiment. Rev Sci Instrum 75(10):4320–4323

    Article  Google Scholar 

  • Spangenberg T, Kohler S, Hansmann B, Wachsmuth U, Abel B, Smith MA (2004) Low-temperature reactions of OH radicals with propene and isoprene in pulsed Laval nozzle expansions. J Phys Chem A 108(37):7527–7534

    Article  Google Scholar 

  • Tanimura S, Okada Y, Takeuchi K (1996) FTIR spectroscopy of UF6 clustering in a supersonic Laval nozzle. J Phys Chem 100(8):2842–2848

    Article  Google Scholar 

  • Tanimura S, Dieregsweiler UM, Wyslouzil BE (2010) Binary nucleation rates for ethanol/water mixtures in supersonic Laval nozzles. J Chem Phys 133(17):174305

    Article  Google Scholar 

  • Taylor SE, Goddard A, Blitz MA, Cleary PA, Heard DE (2008) Pulsed Laval nozzle study of the kinetics of OH with unsaturated hydrocarbons at very low temperatures. Phys Chem Chem Phys 10(3):422–437

    Article  Google Scholar 

  • Tordella D, Belan M, Massaglia S, De Ponte S, Mignone A, Bodenschatz E, Ferrari A (2011) Astrophysical jets: insights into long-term hydrodynamics. New J Phys 13:043011

    Article  Google Scholar 

Download references

Acknowledgments

A.C. is grateful to the European COST program CM1401 “Our Astrochemical history” for financial support during a 2.5 months stay at UCLM and to the French national program PCMI (Physique et Chimie du Milieu Interstellaire, Physics and Chemistry of the Interstellar Medium). Authors from UCLM acknowledge the European Research Council and the former Spanish Ministry of Science and Innovation for supporting this work under the NANOCOSMOS (SyG-610256) and ASTROMOL (CSD2009-00038) projects, respectively. Also we acknowledge the Spanish Ministry of Economy and Competitiveness and the regional government, Junta de Castilla-La Mancha, for financing this work under the GASSOL (CGL2013-43227-R) and FOTOCINE (PEII-2014-043-P) projects, respectively. Special thanks to J. Cernicharo and J. A. Martín Gago from the Instituto de Ciencias de los Materiales-CISC for facilitating the construction of the He23K-IP Laval nozzle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Canosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canosa, A., Ocaña, A.J., Antiñolo, M. et al. Design and testing of temperature tunable de Laval nozzles for applications in gas-phase reaction kinetics. Exp Fluids 57, 152 (2016). https://doi.org/10.1007/s00348-016-2238-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2238-1

Keywords

Navigation