Skip to main content
Log in

Some observations on vortex-ring collisions upon inclined surfaces

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper reports upon a laser-induced fluorescence visualization and time-resolved particle image velocimetry study to resolve the detailed dynamics associated with Re = 2000 and 4000 circular vortex rings colliding with 30°–75° inclined surfaces. Two-dimensional visualization results show that larger inclination angles lead to increasingly rapid size reduction in the primary vortex-ring core closer to the surface, faster formation of the secondary vortex-ring core, and subsequent ingestion by the former. In contrast, primary vortex-ring core further away from the surface becomes physically larger and incoherent more rapidly, with slower formation and entrainment of the secondary vortex-ring core. Interestingly, a vortex dipole and small vortex-ring-like structure are produced for the largest inclination angle of 75°, possibly due to vortex disconnection and reconnection processes. Results taken along the non-inclined plane show significant bulging of the primary vortex-ring cores when the inclination angle increases from 30° onwards. More importantly, additional vortex cores are observed to entwine with the primary vortex-ring core and provide strong direct evidence for the bi-helical vortex line flow mechanism put forward by Lim (Exp Fluids 7:453–463, 1989). Lastly, the behaviour of the primary and secondary vortex-ring cores further away from the surface is highly sensitive towards the state of the bi-helical lines compressed at that region. Strong compression driven by circumferential flows due to large inclination angles may explain the unique flow structures and behaviour observed for 75° inclination angle here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adhikari D, Lim TT (2009) The impact of a vortex ring on a porous screen. Fluid Dyn Res 41:051404

    Article  MATH  Google Scholar 

  • Cheng M, Lou J, Luo L-S (2010) Numerical study of a vortex ring impacting a flat wall. J Fluid Mech 660:430–455

    Article  MathSciNet  MATH  Google Scholar 

  • Chu CC, Wang CT, Chang CC (1995) A vortex ring impinging on a solid plane surface—vortex structure and surface force. Phys Fluids 7:1391–1401

    Article  MATH  Google Scholar 

  • Couch LD, Krueger PS (2011) Experimental investigation of vortex rings impinging on inclined surfaces. Exp Fluids 51:1123–1138

    Article  Google Scholar 

  • Fabris D, Liepmann D, Marcus D (1996) Quantitative experimental and numerical investigation of a vortex ring impinging on a wall. Phys Fluids 8:2640–2649

    Article  Google Scholar 

  • Gharib M, Rambod E, Shariff K (1998) A universal time scale for vortex ring formation. J Fluid Mech 360:121–140

    Article  MathSciNet  MATH  Google Scholar 

  • Homa J, Lucas M, Rockwell D (1988) Interaction of impulsively generated vortex pairs with bodies. J Fluid Mech 197:571–594

    Article  Google Scholar 

  • Hrynuk JT, Van Luipen J, Bohl D (2012) Flow visualization of a vortex ring interaction with porous surfaces. Phys Fluids 24:037103

    Article  Google Scholar 

  • Jang IS, Chiba H, Watanabe S (1996) Impact of a vortex ring on a wall in high Reynolds number region. J Phys Soc Jpn 65:955–959

    Article  Google Scholar 

  • Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215

    Article  Google Scholar 

  • Krueger PS, Gharib M (2003) The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys Fluids 15:1271–1281

    Article  MathSciNet  MATH  Google Scholar 

  • Le TB, Borazjani I, Kang S, Sotiropoulos F (2011) On the structure of vortex rings from inclined nozzles. J Fluid Mech 686:451–483

    Article  MATH  Google Scholar 

  • Lim TT (1989) An experimental study of a vortex ring interacting with an inclined wall. Exp Fluids 7:453–463

    Article  Google Scholar 

  • Lim TT (1998) On the breakdown of vortex rings from inclined nozzles. Phys Fluids 10:1666–1671

    Article  MathSciNet  MATH  Google Scholar 

  • Lim TT, Nickels TB (1992) Instability and reconnection in the head-on collision of two vortex rings. Nature 357:225–227

    Article  Google Scholar 

  • Lim TT, Nickels TB, Chong MS (1991) A note on the cause of rebound in the head-on collision of a vortex ring with a wall. Exp Fluids 12:41–48

    Google Scholar 

  • Luff JD, Drouillard T, Rompage AM, Linné MA, Hertzberg JR (1999) Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms. Exp Fluids 26:36–54

    Article  Google Scholar 

  • Minota T, Nishida M, Lee MG (1997) Shock formation by compressible vortex ring impinging on a wall. Fluid Dyn Res 21:139–157

    Article  Google Scholar 

  • Naaktgeboren C, Krueger PS, Lage JL (2012) Interaction of a laminar vortex ring with a thin permeable screen. J Fluid Mech 707:260–286

    Article  MATH  Google Scholar 

  • Naitoh T, Banno O, Yamada H (2001) Longitudinal vortex structure in the flow field produced by a vortex ring impinging on a flat plate. Fluid Dyn Res 28:61–74

    Article  Google Scholar 

  • New TH (2009) An experimental study on jets issuing from elliptic inclined nozzles. Exp Fluids 46:1139–1157

    Article  Google Scholar 

  • New TH, Tay WL (2006) Effects of cross-stream radial injections on a round jet. J Turb 7:N57

    Article  Google Scholar 

  • New TH, Tsovolos D (2009) Influence of nozzle sharpness on the flow fields of V-notched nozzle jets. Phys Fluids 21:084107

    Article  MATH  Google Scholar 

  • New TH, Tsovolos D (2011) On the vortical structures and behaviour of inclined elliptic jets. Eur J Mech B Fluids 30:437–450

    Article  MATH  Google Scholar 

  • New TH, Tsovolos D (2012) On the flow characteristics of minor-plane inclined elliptic jets. Exp Therm Fluid Sci 38:94–106

    Article  Google Scholar 

  • New TH, Shi S, Liu Y (2013) Cylinder-wall interference effects on finite-length wavy cylinders at subcritical Reynolds number flows. Exp Fluids 54:1601

    Article  Google Scholar 

  • Orlandi P (1990) Vortex dipole rebound from a wall. Phys Fluids A 2:1429–1436

    Article  Google Scholar 

  • Orlandi P, Verzicco R (1993) Vortex rings impinging on walls: axisymmetric and three-dimensional simulations. J Fluid Mech 256:615–646

    Article  MATH  Google Scholar 

  • Shi S, New TH (2013) Some observations in the vortex-turning behaviour of noncircular inclined jets. Exp Fluids 54:1614

    Article  Google Scholar 

  • Shi S, New TH, Liu Y (2013) Flapping dynamics of a low aspect-ratio energy-harvesting membrane immersed in a square cylinder wake. Exp Therm Fluid Sci 46:151–161

    Article  Google Scholar 

  • Swearingen JD, Crouch JD, Handler RA (1995) Dynamics and stability of a vortex ring impacting a solid boundary. J Fluid Mech 297:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Troolin DR, Longmire EK (2010) Volumetric velocity measurements of vortex rings from inclined exits. Exp Fluids 48:409–420

    Article  Google Scholar 

  • Verzicco R, Orlandi P (1994) Normal and oblique collisions of a vortex ring with a wall. Meccanica 29:383–391

    Article  MATH  Google Scholar 

  • Walker JDA, Smith CR, Cerra AW, Doligalski TL (1987) The impact of a vortex ring on a wall. J Fluid Mech 181:99–140

    Article  Google Scholar 

  • Webster DR, Longmire EK (1998) Vortex rings from cylinders with inclined exits. Phys Fluids 10:400–416

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support for this study by the Nanyang Technological University Start-Up Grant, Tan Chin Tuan Exchange Fellowship in Engineering, as well as China NSFC Grant (51106096). Assistance in the flow visualization experiments from Wang L. and Kong M. at Shanghai Jiao Tong University, and programming of the stepper motor by Kwan Z. R. are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. New.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

New, T.H., Shi, S. & Zang, B. Some observations on vortex-ring collisions upon inclined surfaces. Exp Fluids 57, 109 (2016). https://doi.org/10.1007/s00348-016-2196-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2196-7

Keywords

Navigation