Skip to main content
Log in

Akkommodation und Presbyopie

Teil 1: Physiologie der Akkommodation und Entwicklung der Presbyopie

Accommodation and presbyopia

Part 1: Physiology of accommodation and development of presbyopia

  • CME Weiterbildung • Zertifizierte Fortbildung
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Akkommodation ist eine dynamische Brechkraftänderung des Auges. Nach der heute größtenteils akzeptierten und im Wesentlichen experimentell bestätigten Theorie von Helmholtz beruht sie auf dem Nachlassen der Spannung der Zonulafasern bei Kontraktion des Ziliarmuskels und der Formveränderung der Linse durch die elastische Linsenkapsel. Die Fähigkeit zur Akkomodation geht mit zunehmendem Lebensalter allmählich verloren (Presbyopie). Aufgrund der Schwierigkeiten bei der Untersuchung des Akkommodationsapparats in vivo wurden viele, sich teilweise widersprechende Theorien zum Mechanismus der Akkommodation und der Presbyopieentstehung entwickelt. In den letzten Jahren haben experimentelle Studien das Wissen über den Akkommodationsapparat bedeutend erweitert und legen eine multifaktorielle Ätiologie der Presbyopie nahe. Besseres Verständnis der Physiologie von Akkommodation und Presbyopie kann zur Entwicklung von effektiven Therapiemethoden beitragen.

Abstract

Accommodation is a dynamic change in the dioptric power of the eye. According to the widely accepted and experimentally confirmed theory of Helmholtz, it is achieved by release of zonular tension with contraction of the ciliary muscle and consecutive modelling of the shape of the crystalline lens by the elastic lens capsule. The ability to accommodate is gradually lost with age (presbyopia). Because of difficulties in examining the accommodative apparatus in vivo, many theories, in part contradictory, about the mechanism of accommodation and the origin of presbyopia have been developed. In recent years experimental studies have greatly increased the knowledge about the acommodative apparatus and suggest a multifactorial aetiology of presbyopia. A better understanding of the physiology of accommodation and presbyopia can contribute to the development of effective treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Atchison DA, Smith G (2002) Optics of the human eye. Butterworth-Heinemann, Oxford

  2. Baumeister M, Wendt M, Glasser A (2008) Edinger-Westphal stimulated accommodative dynamics in anesthetized, middle-aged rhesus monkeys. Exp Eye Res 86: 25–33

    Article  PubMed  CAS  Google Scholar 

  3. Bito LZ, Kaufman PL, DeRousseau CJ et al. (1987) Presbyopia: an animal model and experimental approaches for the study of the mechanism of accommodation and ocular ageing. Eye 1: 222–230

    PubMed  Google Scholar 

  4. Bito LZ, Miranda OC (1989) Accommodation and presbyopia. Ophthalmology annual. In: Reinecke RD (ed) Ophthalmology annual. Raven, New York, p 103

  5. Brown N (1974) The change in lens curvature with age. Exp Eye Res 19: 175

    Article  PubMed  CAS  Google Scholar 

  6. Buhren J, Kohnen T (2007) Anwendung der Wellenfrontanalyse in Klinik und Wissenschaft. Vom irregularen Astigmatismus zu Aberrationen höherer Ordnung – Teil I: Grundlagen. Ophthalmologe 104: 909–923; quiz 924–925

    Article  PubMed  CAS  Google Scholar 

  7. Cheng H, Barnett JK, Vilupuru AS et al. (2004) A population study on changes in wave aberrations with accommodation. J Vis 4: 272

    Article  PubMed  Google Scholar 

  8. Coleman DJ (1970) Unified model for accommodative mechanism. Am J Ophthalmol 69: 1063

    PubMed  CAS  Google Scholar 

  9. Coleman DJ (1986) On the hydraulic suspension theory of accommodation. Trans Am Ophthalmol Soc 84: 846–868

    PubMed  CAS  Google Scholar 

  10. Cook CA, Koretz JF, Pfahnl A et al. (1994) Aging of the human crystalline lens and anterior segment. Vision Res 34: 2945

    Article  PubMed  CAS  Google Scholar 

  11. Cramer A (1853) Het accommodatievermogen der oogen, physiologisch toegelicht. Hollandsche Maatschappij der Wetenschappen te Haarlem 1: 139

    Google Scholar 

  12. Crampton P (1813) The description of an organ by which the eyes of birds are accommodated to the different distances of objects. Thompson’s Annals Philosophy 1: 170

    Google Scholar 

  13. Croft MA, Glasser A, Heatley G et al. (2006) Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye. Invest Ophthalmol Vis Sci 47: 1076–1086

    Article  PubMed  Google Scholar 

  14. Croft MA, Glasser A, Heatley G et al. (2006) The zonula, lens, and circumlental space in the normal iridectomized rhesus monkey eye. Invest Ophthalmol Vis Sci 47: 1087–1095

    Article  PubMed  Google Scholar 

  15. Drexler W, Baumgartner A, Findl O et al. (1997) Biometric investigation of changes in the anterior eye segment during accommodation. Vision Res 37: 2789

    Article  PubMed  CAS  Google Scholar 

  16. Duane A (1912) Normal values of the accommodation at all ages. JAMA 59: 1010–1012

    Google Scholar 

  17. Dubbelman M, Van Der Heijde GL (2001) The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox. Vision Res 41: 1867

    Article  PubMed  CAS  Google Scholar 

  18. Farnsworth PN, Burke P (1977) Three-dimensional architecture of the suspensory apparatus of the lens of the rhesus monkey. Exp Eye Res 25: 563

    Article  PubMed  CAS  Google Scholar 

  19. Farnsworth PN, Shyne SE (1979) Anterior zonular shifts with age. Exp Eye Res 28: 291

    Article  PubMed  CAS  Google Scholar 

  20. Fincham EF (1937) The mechanism of accommodation. Br J Ophthalmol Monograph VIII: 7–76

    Google Scholar 

  21. Fisher RF (1969) Elastic constants of the human lens capsule. J Physiol 201: 1

    PubMed  CAS  Google Scholar 

  22. Fisher RF (1971) The elastic constants of the human lens. J Physiol 212: 147–180

    PubMed  CAS  Google Scholar 

  23. Fisher RF (1973) Presbyopia and the changes with age in the human crystalline lens. J Physiol 228: 765–779

    PubMed  CAS  Google Scholar 

  24. Fisher RF (1982) The vitreous and lens in accommodation. Trans Ophthalmol Soc UK 102: 318

    PubMed  Google Scholar 

  25. Fisher RF (1983) Is the vitreous necessary for accommodation in man? Br J Ophthalmol 67: 206

    Article  PubMed  CAS  Google Scholar 

  26. Gabelt BT, Kaufman PL, Polansky JR (1990) Ciliary muscle muscarinic binding sites, choline acetyltransferase, and acetylcholinesterase in aging rhesus monkeys. Invest Ophthalmol Vis Sci 31: 2431

    PubMed  CAS  Google Scholar 

  27. Gilmartin B, Bullimore MA (1987) Sustained near-vision augments inhibitory sympathetic innervation of the ciliary muscle. Clin Vis Sci 1: 197

    Google Scholar 

  28. Gilmartin B, Mallen EA, Wolffsohn JS (2002) Sympathetic control of accommodation: evidence for inter-subject variation. Ophthalmic Physiol Opt 22: 366

    Article  PubMed  CAS  Google Scholar 

  29. Glasser A, Campbell MC (1998) Presbyopia and the optical changes in the human crystalline lens with age. Vision Res 38: 209–229

    Article  PubMed  CAS  Google Scholar 

  30. Glasser A, Campbell MC (1999) Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Res 39: 1991–2015

    Article  PubMed  CAS  Google Scholar 

  31. Glasser A, Croft MA, Brumback L et al. (2001) Ultrasound biomicroscopy of the aging rhesus monkey ciliary region. Optom Vis Sci 78: 417

    Article  PubMed  CAS  Google Scholar 

  32. Glasser A (2003) How other species accommodate. In: Guthoff R, Ludwig K (eds) Current aspects of human accommodation II. Kaden, Heidelberg, p 13

  33. Glasser A, Kaufman PL (1999) The mechanism of accommodation in primates. Ophthalmology 106: 863–872

    Article  PubMed  CAS  Google Scholar 

  34. Glasser A, Wendt M, Ostrin L (2006) Accommodative changes in lens diameter in rhesus monkeys. Invest Ophthalmol Vis Sci 47: 278

    Article  PubMed  Google Scholar 

  35. Gullstrand A, Southall JPC (1909) The mechanism of accommodation. In: Southall JPC (ed) Helmholtz’s treatise on physiological optics. Dover, New York, p 382

  36. Heys KR, Cram SL, Truscott RJ (2004) Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol Vis 10: 956–963

    PubMed  Google Scholar 

  37. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. Saunders, Philadelphia

  38. Kaufman PL, Rohen JW, Gabelt BT et al. (1991) Parasympathetic denervation of the ciliary muscle following panretinal photocoagulation. Curr Eye Res 10: 437–455

    Article  PubMed  CAS  Google Scholar 

  39. Keeney AH, Hagman RE, Fratello CJ (1995) Dictionary of ophthalmic optics. Butterworth-Heinemann, Newton, MA

  40. Kohnen T, Baumeister M, Strenger A (2007) Akkommodation. In: Kroll P, Kuchle M, Kuchle HJ (Hrsg) Augenärztliche Untersuchungsmethoden. Thieme, Stuttgart

  41. Koretz JF, Cook CA, Kuszak JR (1994) The zones of discontinuity in the human lens: development and distribution with age. Vision Res 34: 2955

    Article  PubMed  CAS  Google Scholar 

  42. Koretz JF, Handelman GH (1986) The „lens paradox“ and image formation in accommodating human eyes. Top Aging Res Eur 6: 57

    Google Scholar 

  43. Koretz JF, Handelman GH (1986) Modeling age-related accommodative loss in the human eye. Mathematical Modelling 7: 1003

    Article  Google Scholar 

  44. Koretz JF, Handelman GH (1988) How the human eye focuses. Sci Am 259: 92

    Article  PubMed  CAS  Google Scholar 

  45. Kotulak JC, Morse SE (1995) The effect of perceived distance on accommodation under binocular steady-state conditions. Vision Res 35: 791

    Article  PubMed  CAS  Google Scholar 

  46. Krag S, Olsen T, Andreassen TT (1997) Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci 38: 357

    PubMed  CAS  Google Scholar 

  47. Kruger PB, Pola J (1986) Stimuli for accommodation: blur, chromatic aberration and size. Vision Res 26: 957

    Article  PubMed  CAS  Google Scholar 

  48. Lütjen E (1966) Histometrische Untersuchungen über den Ziliarmuskel der Primaten. Graefes Arch Clin Exp Ophthalmol 171: 121–133

    Article  Google Scholar 

  49. Lütjen-Drecoll E, Tamm E, Kaufman PL (1988) Age changes in rhesus monkey ciliary muscle: light and electron microscopy. Exp Eye Res 47: 885

    Article  PubMed  Google Scholar 

  50. Lütjen-Drecoll E, Tamm E, Kaufman PL (1988) Age-related loss of morphologic responses to pilocarpine in rhesus monkey ciliary muscle. Arch Ophthalmol 106: 1591–1598

    PubMed  Google Scholar 

  51. Mallen EA, Gilmartin B, Wolffsohn JS (2005) Sympathetic innervation of ciliary muscle and oculomotor function in emmetropic and myopic young adults. Vision Res 45: 1641

    Article  PubMed  Google Scholar 

  52. McCulloch C (1954) The zonule of Zinn: its origin, course, and insertion, and its relation to neighboring structures. Trans Am Ophthalmol Soc 52: 525

    PubMed  Google Scholar 

  53. McGinty SJ, Truscott RJ (2006) Presbyopia: The first stage of nuclear cataract? Ophthalmic Res 38: 137

    Article  PubMed  CAS  Google Scholar 

  54. Müller H (1857) Ueber den accommodations-apparat im auge der Vogel, besonders der Falken. Arch Ophthalmol 3: 25

    Google Scholar 

  55. Neider MW, Crawford K, Kaufman PL et al. (1990) In vivo videography of the rhesus monkey accommodative apparatus: age-related loss of ciliary muscle response to central stimulation. Arch Ophthalmol 108: 69

    PubMed  CAS  Google Scholar 

  56. Pau H, Kranz J (1991) The increasing sclerosis of the human lens with age and its relevance to accommodation and presbyopia. Graefes Arch Clin Exp Ophthalmol 229: 294–296

    Article  PubMed  CAS  Google Scholar 

  57. Pierscionek B, Weale RA (1995) Presbyopia – a maverick of human aging. Arch Gerontol Geriatr 20: 229

    Article  PubMed  CAS  Google Scholar 

  58. Poyer JF, Kaufman PL, Flugel C (1993) Age does not affect contractile responses of the isolated rhesus monkey ciliary muscle to muscarinic agonists. Curr Eye Res 12: 413

    Article  PubMed  CAS  Google Scholar 

  59. Quinlan DJ, Culham JC (2007) fMRI reveals a preference for near viewing in the human parieto-occipital cortex. Neuroimage 36: 167–187

    Article  PubMed  CAS  Google Scholar 

  60. Richter HO, Costello P, Sponheim SR et al. (2004) Functional neuroanatomy of the human near/far response to blur cues: eye-lens accommodation/vergence to point targets varying in depth. Eur J Neurosci 20: 2722

    Article  PubMed  Google Scholar 

  61. Rohen JW (1979) Scanning electron microscopic studies of the zonular apparatus in human and monkey eyes. Invest Ophthalmol Vis Sci 18: 133

    PubMed  CAS  Google Scholar 

  62. Schachar RA (1992) Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. Ann Ophthalmol 24: 445

    PubMed  CAS  Google Scholar 

  63. Schachar RA (2000) Theoretical basis for the scleral expansion band procedure for surgical reversal of presbyopia (SRP). Ann Ophthalmol 32: 271

    Article  Google Scholar 

  64. Schachar RA, Black TD, Kash RL et al. (1995) The mechanism of accommodation and presbyopia in the primate. Ann Ophthalmol 27: 58

    Google Scholar 

  65. Scheiner C (1619) Oculus, hoc est: Fundamentum opticum. Innsbruck

  66. Schneider H, Bacskulin A, Guthoff R et al. (2001) History of accommodation research. In: Guthoff R, Ludwig K (eds) Current aspects of human accommodation. Kaden, Heidelberg, pp 11–23

  67. Shapiro JA, Kelly JE, Howland HC (2005) Accommodative state of young adults using reading spectacles. Vision Res 45: 233

    Article  PubMed  Google Scholar 

  68. Smithline LM (1974) Accommodative response to blur. J Opt Soc Am 64: 1512

    Article  PubMed  CAS  Google Scholar 

  69. Stark LR, Atchison DA (1994) Subject instructions and methods of target presentation in accommodation research. Invest Ophthalmol Vis Sci 35: 528

    PubMed  CAS  Google Scholar 

  70. Strenk SA, Semmlow JL, Strenk LM et al. (1999) Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci 40: 1162

    PubMed  CAS  Google Scholar 

  71. Strenk SA, Strenk LM, Semmlow JL (2000) High resolution MRI study of circumlental space in the aging eye. J Refract Surg 16: S659

    PubMed  CAS  Google Scholar 

  72. Takeda T, Hashimoto K, Hiruma N et al. (1999) Characteristics of accommodation toward apparent depth. Vision Res 39: 2087

    Article  PubMed  CAS  Google Scholar 

  73. Tamm E, Croft MA, Jungkunz W et al. (1992) Age-related loss of ciliary muscle mobility in the rhesus monkey. Role of the choroid. Arch Ophthalmol 110: 871–876

    PubMed  CAS  Google Scholar 

  74. Tamm E, Lütjen-Drecoll E, Jungkunz W et al. (1991) Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci 32: 1678–1692

    PubMed  CAS  Google Scholar 

  75. Tamm ER, Lütjen-Drecoll E (1996) Ciliary body. Microsc Res Tech 33: 390

    Article  PubMed  CAS  Google Scholar 

  76. Tamm S, Tamm E, Rohen JW (1992) Age-related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev 62: 209–221

    Article  PubMed  CAS  Google Scholar 

  77. Taylor VL, al-Ghoul KJ, Lane CW et al. (1996) Morphology of the normal human lens. Invest Ophthalmol Vis Sci 37: 1396

    PubMed  CAS  Google Scholar 

  78. Truscott RJ (2000) Age-related nuclear cataract: a lens transport problem. Ophthalmic Res 32: 185–194

    Article  PubMed  CAS  Google Scholar 

  79. Tscherning M (1899) The theory of accommodation. Ophthalmic Rev 18: 91

    Google Scholar 

  80. Vilupuru AS, Glasser A (2002) Dynamic accommodation in rhesus monkeys. Vision Res 42: 125–141

    Article  PubMed  Google Scholar 

  81. Vilupuru AS, Glasser A (2005) The relationship between refractive and biometric changes during Edinger-Westphal stimulated accommodation in rhesus monkeys. Exp Eye Res 80: 349–360

    Article  PubMed  CAS  Google Scholar 

  82. Helmholtz H von (1855) Über die Accommodation des Auges. Graefes Arch Ophthalmol 1, Abt II: 1–74

  83. Helmholtz H von, Gullstrand A, Kries J von et al. (1909) Handbuch der Physiologischen Optik. 3. Aufl. Voss, Hamburg Leipzig

  84. Weale R (1989) Presbyopia toward the end of the 20th century. Surv Ophthalmol 34: 15

    Article  PubMed  CAS  Google Scholar 

  85. Weale RA (1999) On potential causes of presbyopia [letter]. Vision Res 39: 1263

    Article  PubMed  CAS  Google Scholar 

  86. Weeber HA, Eckert G, Pechhold W, Heijde RG van der (2007) Stiffness gradient in the crystalline lens. Graefes Arch Clin Exp Ophthalmol 245: 1357–1366

    Article  PubMed  Google Scholar 

  87. Weeber HA, Eckert G, Soergel F et al. (2005) Dynamic mechanical properties of human lenses. Exp Eye Res 80: 425–434

    Article  PubMed  CAS  Google Scholar 

  88. Young T (1801) On the mechanism of the eye. Philos Trans R Soc Lond 91: 23–88

    Article  Google Scholar 

  89. Tillmann BN (2005) Atlas der Anatomie des Menschen. Springer, Berlin Heidelberg New York Tokyo, S 124, Abb. 2.182

Download references

Interessenkonflikt

Keine Angaben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kohnen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumeister, M., Kohnen, T. Akkommodation und Presbyopie. Ophthalmologe 105, 597–610 (2008). https://doi.org/10.1007/s00347-008-1761-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-008-1761-8

Schlüsselwörter

Keywords

Navigation