Skip to main content
Log in

Predicting impacts of climate change on the biogeographic patterns of representative species richness in Prydz Bay-Amery Ice Shelf

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The research on the biological ecology of the Prydz Bay-Amery Ice Shelf in East Antarctica is inadequate under the increasing threat from climate change, especially for Antarctic fish and krill. The Dynamic Bioclimatic Envelope Model (DBEM) has been widely used in predicting the variation of species distribution and abundance in ocean and land under climate change; it can quantify the spatiotemporal changes of multi population under different climate emission scenarios by identifying the environmental preferences of species. The species richness and geographical pattern of six Antarctic representative species around Prydz Bay-Amery ice shelf were studied under RCP 8.5 and RCP 2.6 emission scenarios from 1970 to 2060 using Geophysical Fluid Dynamics Laboratory (GFDL), Institut Pierre Simon Laplace (IPSL), and Max Planck Institute (MPI) earth system models. The results showed that the species richness decreased as a whole, and the latitude gradient moved to the pole. The reason is that ocean warming, sea ice melting, and human activities accelerate the distribution changes of species biogeographical pattern, and the habitat range of krill, silverfish, and other organisms is gradually limited, which further leads to the change of species composition and the decrease of biomass. It is obvious that priority should be given to Prydz Bay-Amery ice shelf in the planning of Marine Protected Areas (MPAs) in East Antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are openly available in Science at https://doi.org/10.1126/science.aag2331 (Cheung et al., 2016). The data that support the findings of this study are openly available in FishBase at https://www.fishbase. org, the Oceanic Biogeographic Information System at http://iobis.org, Sea Life Base at https://www.sealifebase.org, and Sea Around Us Project at https://www.seaaroundus.org.

References

  • Ainley D G. 2002. The Adélie Penguin. Columbia University Press, New York.

    Google Scholar 

  • Alley R B, Marotzke J, Nordhaus W D et al. 2003. Abrupt climate change. Science, 299(5615): 2005–2010, https://doi.org/10.1126/science.1081056.

    Google Scholar 

  • Amos A F. 1984. Distribution of krill (Euphausia superba) and the hydrography of the Southern Ocean: large-scale processes. Journal of Crustacean Biology, 4(5): 306–329.

    Google Scholar 

  • Arrigo K R, van Dijken G L. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. Journal of Geophysical Research: Oceans, 108(C8): 3271, https://doi.org/10.1029/2002JC001739.

    Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E et al. 2004. Long-term decline in krill stock and increase in Salps within the Southern Ocean. Nature, 432(7013): 100–103, https://doi.org/10.1038/nature02996.

    Google Scholar 

  • Barbraud C, Weimerskirch H. 2001. Emperor penguins and climate change. Nature, 411(6834): 183–186, https://doi.org/10.1038/35075554.

    Google Scholar 

  • Bargagli R. 2008. Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400(1–3): 212–226, https://doi.org/10.1016/j.scitotenv.2008.06.062.

    Google Scholar 

  • Bestley S, Raymond B, Gales N J et al. 2018. Predicting krill swarm characteristics important for marine predators foraging off east Antarctica. Ecography, 41(6): 996–1012, https://doi.org/10.1111/ecog.03080.

    Google Scholar 

  • Branch T A, Jensen O P, Ricard D et al. 2011. Contrasting global trends in marine fishery status obtained from catches and from stock assessments. Conservation Biology, 25(4): 777–786, 10.1523-1739.2011.01687.x.

    Google Scholar 

  • Cherel Y. 2008. Isotopic niches of emperor and Adélie penguins in Adélie Land, Antarctica. Marine Biology, 154(5): 813–821.

    Google Scholar 

  • Cheung W W L, Brodeur R D, Okey T A et al. 2015. Projecting future changes in distributions of pelagic fish species of northeast Pacific shelf seas. Progress in Oceanography, 130: 19–31, https://doi.org/10.1016/j.pocean.2014.09.003.

    Google Scholar 

  • Cheung W W L, Lam V W Y, Pauly D. 2008. Modelling Present and Climate-shifted Distribution of Marine Fishes and Invertebrates. Fisheries Centre, University of British Columbia, Vancouver.

    Google Scholar 

  • Cheung W W L, Lam V W Y, Sarmiento J L et al. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10(3): 235–251, https://doi.org/10.1111/j.1467-2979.2008.00315.x.

    Google Scholar 

  • Cheung W W L, Lam V W Y, Sarmiento J L et al. 2010. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1): 24–35, https://doi.org/10.1111/j.1365-2486.2009.01995.x.

    Google Scholar 

  • Cheung W W L, Reygondeau G, Frölicher T L. 2016. Large benefits to marine fisheries of meeting the 1.5 °C global warming target. Science, 354(6319): 1591–1594, https://doi.org/10.1126/science.aag2331.

    Google Scholar 

  • Cheung W W L, Watson R, Morato T et al. 2007. Intrinsic vulnerability in the global fish catch. Marine Ecology Progress Series, 333: 1–12, https://doi.org/10.3354/meps333001.

    Google Scholar 

  • Cheung W W L, Watson R, Pauly D. 2013. Signature of ocean warming in global fisheries catch. Nature, 497(7449): 365–368, https://doi.org/10.1038/nature12156.

    Google Scholar 

  • Clarke A, Murphy E J, Meredith M P et al. 2007. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1477): 149–166.

    Google Scholar 

  • Close C, Cheung W, Hodgson S et al. 2006. Distribution Ranges of Commercial Fishes and Invertebrates. Fisheries Centre, University of British Columbia, Vancouver.

    Google Scholar 

  • Convey P, Peck L S. 2019. Antarctic environmental change and biological responses. Science Advances, 5(11): eaaz0888, https://doi.org/10.1126/sciadv.aaz0888.

    Google Scholar 

  • Craven M, Allison I, Fricker H A et al. 2011. The AMISOR (Amery Ice Shelf Ocean Research) Project: an Overview. IGS/FRISP, La Jolla, California, USA.

    Google Scholar 

  • Croxall J P, Nicol S. 2004. Management of Southern Ocean fisheries: global forces and future sustainability. Antarctic Science, 16(4): 569–584, https://doi.org/10.1017/S0954102004002330.

    Google Scholar 

  • Daniels R A, Lipps J H. 1982. Distribution and ecology of fishes of the Antarctic Peninsula. Journal of Biogeography, 9(1): 1–9.

    Google Scholar 

  • Dehnhard N, Achurch H, Clarke J et al. 2020. High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: generalist foraging as an adaptation to a highly variable environment?. Journal of Animal Ecology, 89(1): 104–119, https://doi.org/10.1111/1365-2656.13078.

    Google Scholar 

  • Demer D. 2004. An estimate of error for the CCAMLR 2000 survey estimate of krill biomass. Deep Sea Research Part II: Topical Studies in Oceanography, 51(12–13): 1237–1251, https://doi.org/10.1016/j.dsr2.2004.06.012.

    Google Scholar 

  • Ding Y J, Li C Y, Wang X M et al. 2021. An overview of climate change impacts on the society in China. Advances in Climate Change Research, 12(2): 210–223, https://doi.org/10.1016/j.accre.2021.03.002.

    Google Scholar 

  • Doake C S M, Vaughan D G. 1991. Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming. Nature, 350(6316): 328–330, https://doi.org/10.1038/350328a0.

    Google Scholar 

  • Dudley P N, Rogers T L, Morales M M et al. 2021. A more comprehensive climate vulnerability assessment framework for fisheries social-ecological systems. Frontiers Marine Science, 8: 678099, https://doi.org/10.3389/fmars.2021.678099.

    Google Scholar 

  • Eastman J T. 1985. Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other fishes in McMurdo Sound, Antarctica. Polar Biology, 4(3): 155–160, https://doi.org/10.1007/BF00263878.

    Google Scholar 

  • Egginton S, Campbell H A. 2016. Cardiorespiratory responses in an Antarctic fish suggest limited capacity for thermal acclimation. Journal of Experimental Biology, 219(9): 1283–1286, https://doi.org/10.1242/jeb.130963.

    Google Scholar 

  • Fan T T, Deser C, Schneider D P. 2014. Recent Antarctic sea ice trends in the context of southern ocean surface climate variations since 1950. Geophysical Research Letters, 41(7): 2419–2426, https://doi.org/10.1002/2014GL059239.

    Google Scholar 

  • Flores H, Atkinson A, Kawaguchi S et al. 2012. Impact of climate change on Antarctic krill. Marine Ecology Progress Series, 458: 1–19, https://doi.org/10.3354/meps09831.

    Google Scholar 

  • Fossheim M, Primicerio R, Johannesen E et al. 2015. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nature Climate Change, 5(7): 673–677, https://doi.org/10.1038/nclimate2647.

    Google Scholar 

  • Galton-Fenzi B K, Hunter J R, Coleman R. 2007. Modelling the circulation and melt/freeze beneath the Amery Ice Shelf, East Antarctica. In: AGU Fall Meeting Abstracts. AGU.

  • Gille S T. 2002. Warming of the Southern Ocean since the 1950s. Science, 295(5558): 1275–1277, https://doi.org/10.1126/science.1065863.

    Google Scholar 

  • Goldsworthy L, Brennan E. 2021. Climate change in the Southern Ocean: is the commission for the convention for the conservation of Antarctic marine living resources doing enough?. Marine Policy, 130: 104549, https://doi.org/10.1016/j.marpol.2021.104549.

    Google Scholar 

  • Grémillet D, Boulinier T. 2009. Spatial ecology and conservation of seabirds facing global climate change: a review. Marine Ecology: Progress Series, 391: 121–137, https://doi.org/10.3354/meps08212.

    Google Scholar 

  • Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9): 993–1009, https://doi.org/10.1111/j.1461-0248.2005.00792.x.

    Google Scholar 

  • Harris J W, Woehler E J. 2004. Can the important bird area approach improve the Antarctic protected area system?. Polar Record, 40(2): 97–105, https://doi.org/10.1017/S0032247403003322.

    Google Scholar 

  • Hesse R. 1924. Tiergeographie auf Ökologischer Grundlage. Verlag Gustav Fischer, Jena. 613p.

    Google Scholar 

  • Hiddink J G, Ter Hofstede R. 2008. Climate induced increases in species richness of marine fishes. Global Change Biology, 14(3): 453–460, https://doi.org/10.1111/j.1365-2486.2007.01518.x.

    Google Scholar 

  • Hijmans R J, Graham C H. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12(12): 2272–2281, https://doi.org/10.1111/j.1365-2486.2006.01256.x.

    Google Scholar 

  • Hultzsch N. 2007. Lacustrine Sediment Records of Late Quaternary Environmental Change in the Amery Oasis, East Antarctica, Ber. Polarforsch. Meeresforsch. 545.

    Google Scholar 

  • Jenouvrier S, Holland M, Iles D et al. 2020. The Paris agreement objectives will likely halt future declines of emperor penguins. Global Change Biology, 26(3): 1170–1184, https://doi.org/10.1111/gcb.14864.

    Google Scholar 

  • Jones M C, Dye S R, Pinnegar J K et al. 2012. Modelling commercial fish distributions: prediction and assessment using different approaches. Ecological Modelling, 225: 133–145, https://doi.org/10.1016/j.ecolmodel.2011.11.003.

    Google Scholar 

  • Jung C A, Swearer S E, Jenkins G P. 2010. Changes in diversity in the fish assemblage of a southern Australian embayment: consistent spatial structuring at decadal scales. Marine and Freshwater Research, 61(12): 1425–1434, https://doi.org/10.1071/MF10080.

    Google Scholar 

  • Kawaguchi S, Nicol S, Press A J. 2010. Direct effects of climate change on the Antarctic krill fishery. Fisheries Management and Ecology, 16(5): 424–427, https://doi.org/10.1111/j.1365-2400.2009.00686.x.

    Google Scholar 

  • Kock K H. 2005. Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, part I. Polar Biology, 28(11): 862–895, https://doi.org/10.1007/s00300-005-0019-z.

    Google Scholar 

  • Kock K H, Everson I. 2003. Shedding new light on the life cycle of mackerel icefish in the Southern Ocean. Journal of Fish Biology, 63(1): 1–21, https://doi.org/10.1046/j.1095-8649.2003.00150.x.

    Google Scholar 

  • Kock K H, Pshenichnov L, Jones C D et al. 2004. Joinville-D’Urville Islands (subarea 48.1)-a former fishing ground for the spiny icefish (Chaenodraco wilsoni), at the tip of the Antarctic Peninsula-revisited. CCAMLR Science, 11: 1–20.

    Google Scholar 

  • Kock K H, Pshenichnov L, Jones C D et al. 2008. The biology of the spiny icefish Chaenodraco wilsoni Regan, 1914. Polar Biology, 31(3): 381–393, https://doi.org/10.1007/s00300-007-0366-z.

    Google Scholar 

  • Kusahara K, Hasumi H. 2013. Modeling Antarctic ice shelf responses to future climate changes and impacts on the ocean. Journal of Geophysical Research: Oceans, 118(5): 2454–2475, https://doi.org/10.1002/jgrc.20166.

    Google Scholar 

  • La Mesa M, Eastman J T. 2012. Antarctic silverfish: life strategies of a key species in the high -Antarctic ecosystem. Fish and Fisheries, 13(3): 241–266, https://doi.org/10.1111/j.1467-2979.2011.00427.x.

    Google Scholar 

  • La Mesa M, Riginella E, Mazzoldi C et al. 2015. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the western Antarctic Peninsula. Marine Ecology, 36(2): 235–245, https://doi.org/10.1111/maec.12140.

    Google Scholar 

  • Liu J P, Curry J A, Martinson D G. 2004. Interpretation of recent Antarctic sea ice variability. Geophysical Research Letters, 31(2): L02205, https://doi.org/10.1029/2003GL018732.

    Google Scholar 

  • Lowther A D, Staniland I, Lydersen C et al. 2020. Male Antarctic fur seals: neglected food competitors of bioindicator species in the context of an increasing Antarctic krill fishery. Scientific Reports, 10(1): 18436, https://doi.org/10.1038/s41598-020-75148-9.

    Google Scholar 

  • Makarov R R, Menshenina L L. 1989. On the Distribution of Euphausiid Larvae in the Antarctic Waters. Okeanograficeskaja Komissija, Moskva.

    Google Scholar 

  • Mangel M. 2011. An Assessment of Japanese Whale Research Programs Under Special Permit in the Antarctic (JARPA, JARPA II) as Programs for Purposes of Scientific Research in the Context of Conservation and Management of Whales.

  • Margules C R, Pressey R L. 2000. Systematic conservation planning. Nature, 405(6783): 243–253.

    Google Scholar 

  • McMahon C R, Burton H R. 2005. Climate change and seal survival: evidence for environmentally mediated changes in elephant seal, Mirounga leonina, pup survival. Proceedings of the Royal Society B: Biological Sciences, 272(1566): 923–928, https://doi.org/10.1098/rspb.2004.3038.

    Google Scholar 

  • Meyer B, Atkinson A, Stöbing D et al. 2002. Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter -I -Furcilia III larvae. Limnology and Oceanography, 47(4): 943–952.

    Google Scholar 

  • Mika A M. 2008. Proposed Improvements on Predicting Species’ Distributions with Climate Change Using Bioclimatic Envelope Modelling. University of Guelph, Guelph.

    Google Scholar 

  • Mintenbeck K, Barrera-Oro E R, Brey T et al. 2012. Impact of climate change on fishes in complex Antarctic ecosystems. Advances in Ecological Research, 46: 351–426.

    Google Scholar 

  • Murphy E J, Cavanagh R D, Drinkwater K F et al. 2016. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proceedings of the Royal Society B: Biological Sciences, 283(1844): 20161646, https://doi.org/10.1098/rspb.2016.1646.

    Google Scholar 

  • Mysak L A. 2008. Glacial inceptions: past and future. Atmosphere Ocean, 46(3): 317–341.

    Google Scholar 

  • Nicol S, Endo Y. 1999. Krill fisheries: development, management and ecosystem implications. Aquatic Living Resources, 12(2): 105–120, https://doi.org/10.1016/S0990-7440(99)80020-5.

    Google Scholar 

  • O’Brien P E, Leitchenkov G. 1997. Deglaciation of Prydz Bay, east Antarctica, based on echo sounding and topographic features. In: Barker P F, Cooper A K eds. Geology and Seismic Stratigraphy of the Antarctic Margin, 2, Volume 71. American Geophysical Union, Washington. p.109–126, https://doi.org/10.1029/AR071p0109.

    Google Scholar 

  • Pershing A J, Alexander M A, Hernandez C M et al. 2015. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science, 350(6262): 809–812, https://doi.org/10.1126/science.aac9819.

    Google Scholar 

  • Pinsky M L, Worm B, Fogarty M J et al. 2013. Marine taxa track local climate velocities. Science, 341(6151): 1239–1242, https://doi.org/10.1126/science.1239352.

    Google Scholar 

  • Policansky D. 1994. Antarctic fish biology: evolution in a unique environment: by Joseph T. Eastman academic press, 1993. $74.95 hbk (xiii+322 pages) ISBN 0 12 228140 3. Trends in Ecology & Evolution, 9(5): 194–195, https://doi.org/10.1016/0169-5347(94)90090-6.

    Google Scholar 

  • Poloczanska E S, Brown C J, Sydeman W J et al. 2013. Global imprint of climate change on marine life. Nature Climate Change, 3(10): 919–925, https://doi.org/10.1038/nclimate1958.

    Google Scholar 

  • Post A L, Hemer M A, O’Brien P E et al. 2007. History of benthic colonisation beneath the Amery Ice Shelf, east Antarctica. Marine Ecology Progress Series, 344: 29–37.

    Google Scholar 

  • Pritchard H D, Ligtenberg S R M, Fricker H A et al. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395): 502–505.

    Google Scholar 

  • Rebelo H, Tarroso P, Jones G. 2010. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16(2): 561–576, https://doi.org/10.1111/j.1365-2486.2009.02021.x.

    Google Scholar 

  • Reed D H. 2015. Impact of climate change on biodiversity. In: Chen W Y, Seiner J, Suzuki T et al. eds. Handbook of Climate Change Mitigation. Springer, New York. p.505–530, https://doi.org/10.1007/978-1-4419-7991-9_15.

    Google Scholar 

  • Root T L, Price J T, Hall K R et al. 2003. Fingerprints of global warming on wild animals and plants. Nature, 421(6918): 57–60, https://doi.org/10.1038/nature01333.

    Google Scholar 

  • Ross R M, Quetin L B. 1991. Ecological physiology of larval euphausiids, Euphausia superba (Euphausiaceae). Memoirs-Queensland Museum, 31: 321–333.

    Google Scholar 

  • Ross R M, Quetin L B, Kirsch E. 1988. Effect of temperature on developmental times and survival of early larval stages of Euphausia superba dana. Journal of Experimental Marine Biology and Ecology, 121(1): 55–71, https://doi.org/10.1016/0022-0981(88)90023-8.

    Google Scholar 

  • Rott H, Skvarca P, Nagler T. 1996. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science, 271(5250): 788–792, https://doi.org/10.1126/science.271.5250.788.

    Google Scholar 

  • Scambos T, Hulbe C, Fahnestock M. 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. In: Domack E, Levente A, Burnet A et al. eds. Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives, Volume 79. American Geophysical Union, Washington. p.79–92.

    Google Scholar 

  • Schofield O, Ducklow H W, Martinson D G et al. 2010. How do polar marine ecosystems respond to rapid climate change? Science, 328(5985): 1520–1523, https://doi.org/10.1126/science.1185779.

    Google Scholar 

  • Seebacher F, Davison W, Lowe C J et al. 2005. A falsification of the thermal specialization paradigm: compensation for elevated temperatures in Antarctic fishes. Biology Letters, 1(2): 151–154, https://doi.org/10.1098/rsbl.2004.0280.

    Google Scholar 

  • Shadwick E H, Trull T W, Thomas H et al. 2013. Vulnerability of polar oceans to anthropogenic acidification: comparison of arctic and Antarctic seasonal cycles. Scientific Reports, 3(1): 2339, https://doi.org/10.1038/srep02339.

    Google Scholar 

  • Southwell C, Emmerson L, Takahashi A et al. 2017. Large-scale population assessment informs conservation management for seabirds in Antarctica and the Southern Ocean: a case study of Adélie penguins. Global Ecology and Conservation, 9: 104–115, https://doi.org/10.1016/j.gecco.2016.12.004.

    Google Scholar 

  • Sowers T. 2003. Evidence for in-situ metabolic activity in ice sheets based on anomalous trace gas records from the Vostok and other ice cores. In: Proceedings of EGS-AGU-EUG Joint Assembly. Nice.

  • Spiridonov V A. 2010. A scenario of the Late-Pleistocene-Holocene changes in the distributional range of Antarctic krill (Euphausia superba). Marine Ecology, 17(1–3): 519–541, https://doi.org/10.1111/j.1439-0485.1996.tb00525.x.

    Google Scholar 

  • Stirling I. 1997. The importance of polynyas, ice edges, and leads to marine mammals and birds. Journal of Marine Systema, 10(1–4): 9–21, https://doi.org/10.1016/S0924-7963(96)00054-1.

    Google Scholar 

  • Tanaka K, Chen Y. 2016. Modeling spatiotemporal variability of the bioclimate envelope of Homarus americanus in the coastal waters of Maine and New Hampshire. Fisheries Research, 177: 137–152.

    Google Scholar 

  • Torres R, Jayat J P, Pacheco S. 2013. Modelling potential impacts of climate change on the bioclimatic envelope and conservation of the maned wolf (Chrysocyon brachyurus). Mammalian Biology, 78(1): 41–49, https://doi.org/10.1016/j.mambio.2012.04.008.

    Google Scholar 

  • Turner J, Barrand N E, Bracegirdle T J et al. 2013. Antarctic climate change and the environment: an update. Polar Record, 50(3): 237–259.

    Google Scholar 

  • Turner J, Hosking J S, Bracegirdle T J et al. 2015. Recent changes in Antarctic Sea Ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2045): 20140163.

    Google Scholar 

  • Tynan C T. 1998. Ecological importance of the southern boundary of the Antarctic circumpolar current. Nature, 392(6677): 708–710, https://doi.org/10.1038/33675.

    Google Scholar 

  • Vacchi M, La Mesa M, Dalu M et al. 2004. Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antarctic Science, 16(3): 299–305.

    Google Scholar 

  • Vacchi M, Pisano E, Ghigliotti L. 2017. The Antarctic Silverfish: a Keystone Species in a Changing Ecosystem. Springer, Cham, Switzerland. p. 265–267, https://doi.org/10.1007/978-3-319-55893-6.

    Google Scholar 

  • Van de Putte A P, Jackson G D, Pakhomov E et al. 2010. Distribution of squid and fish in the pelagic zone of the Cosmonaut Sea and Prydz Bay region during the BROKE-West campaign. Deep-Sea Research Part II: Topical Studies in Oceanography, 57(9–10): 956–967, https://doi.org/10.1016/j.dsr2.2008.02.015.

    Google Scholar 

  • Wagner B, Cremer H, Hultzsch N et al. 2004. Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, east Antarctica, and its climatic and environmental implications. Journal of Paleolimnology, 32(4): 321–339, https://doi.org/10.1007/s10933-004-0143-8.

    Google Scholar 

  • Wall E, Smit B. 2005. Climate change adaptation in light of sustainable agriculture. Journal of Sustainable Agriculture, 27(1): 113–123, https://doi.org/10.1300/J064v27n01_07.

    Google Scholar 

  • Warwick-Evans V, Santora J A, Waggitt J J et al. 2021. Multi-scale assessment of distribution and density of procellariiform seabirds within the Northern Antarctic Peninsula marine ecosystem. ICES Journal of Marine Science, 78(4): 1324–1339, https://doi.org/10.1093/icesjms/fsab020.

    Google Scholar 

  • Williams M J M, Warner R C, Budd W F. 2002. Sensitivity of the Amery Ice Shelf, Antarctica, to changes in the climate of the Southern Ocean. Journal of Climate, 15(19): 2740–2757, https://doi.org/10.1175/1520-0442(2002)015<2740:SOTAIS>2.0.CO;2.

    Google Scholar 

  • Williams T D, Wilson R P, Boersma P et al. 1995. The Penguins. Oxford University Press, Oxford.

    Google Scholar 

  • Wu R J, Yang Q Y, Zhu G P. 2020. Fatty acid composition of spiny icefish (Chaenodraco wilsoni) in the Bransfield Strait, Antarctic during summer-autumn 2016 and its implication to diet. Chinese Journal of Polar Research, 32(1): 82–89, https://doi.org/10.13679/j.jdyj.20190001. (in Chinese with English abstract)

    Google Scholar 

  • Zhang J I. 2007. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. Journal of Climate, 20(11): 2515–2529, https://doi.org/10.1175/JCLI4136.1.

    Google Scholar 

  • Zheng S J, Shi J X, Jiao Y T et al. 2011. Spatial distribution of ice shelf water in front of the Amery Ice Shelf, Antarctica in summer. Chinese Journal of Oceanology and Limnology, 29(6): 1325–1338, https://doi.org/10.1007/s00343-011-0318-x.

    Google Scholar 

  • Zhu Y G, Zheng S Y, Reygondeau G et al. 2020. Modelling spatiotemporal trends in range shifts of marine commercial fish species driven by climate change surrounding the Antarctic Peninsula. Science of the Total Environment, 737: 140258, https://doi.org/10.1016/j.scitotenv.2020.140258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William W. L. Cheung or Jiansong Chu.

Additional information

Supported by the National Natural Science Foundation of China (No. 42176234), the Chinese Arctic and Antarctic Creative Program (No. JDB20210211), and the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0402)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Zheng, S., Kang, B. et al. Predicting impacts of climate change on the biogeographic patterns of representative species richness in Prydz Bay-Amery Ice Shelf. J. Ocean. Limnol. 41, 1504–1518 (2023). https://doi.org/10.1007/s00343-022-2068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-022-2068-3

Keyword

Navigation