Skip to main content
Log in

Description of two new species of Pseudoaliinostoc (Nostocales, Cyanobacteria) from China based on the polyphasic approach

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Two cyanobacterial strains CHAB5870 and CHAB5871 morphologically identified as Nostoc-like species were isolated from different habitats in China, and they were phylogenetically and taxonomically characterized based on a polyphasic approach combining morphological, ecological, and molecular data. In the 16S rRNA gene phylogeny inferred using maximum likelihood, maximum-parismony, and bayesian inference methods, these two strains clustered within the Pseudoaliinostoc clade. The 16S rRNA gene sequences of these two strains displayed ≥95.5% and ≤98% similarity to Pseudoaliinostoc species, which indicated them to represent new species of the genus Pseudoaliinostoc. Furthermore, the unique pattern of D1–D1′ and Box-B helix of the 16S–23S rRNA internal transcribed spacer (ITS) secondary structure also revealed that two strains represented novel species. These results supported the establishment of two new Pseudoaliinostoc species with the name P. jiangxiense sp. nov. and P. yunnanense sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of the study are available from the corresponding author upon reasonable request.

References

  • Bagchi S N, Dubey N, Singh P. 2017. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. International Journal of Systematic and Evolutionary Microbiology, 67(9): 3329–3338, https://doi.org/10.1099/ijsem.0.002112.

    Article  Google Scholar 

  • Bohunická M, Pietrasiak N, Johansen J R, Gómez E B, Hauer T, Gaysina L A, Lukešová A. 2015. Roholtiella, gen. nov. (Nostocales, Cyanobacteria)—a tapering and branching cyanobacteria of the family Nostocaceae. Phytotaxa, 197(2): 84–103, https://doi.org/10.11646/phytotaxa.197.2.2.

    Article  Google Scholar 

  • Cai F F, Li R H. 2020. Purpureonostoc, a new name for a recently described genus of Nostoc-like cyanobacteria. Fottea, 20(2): 111, https://doi.org/10.5507/fot.2020.007.

    Article  Google Scholar 

  • Cai F F, Li X C, Geng R Z, Peng X, Li R H. 2019a. Phylogenetically distant clade of Nostoc-like taxa with the description of Minunostoc gen. nov. and Minunostoc cylindricum sp. nov. Fottea, 19(1): 13–24, https://doi.org/10.5507/fot.2018.013.

    Article  Google Scholar 

  • Cai F F, Li X C, Yang Y M, Jia N N, Huo D, Li R H. 2019b. Compactonostoc shennongjiaensis gen. & sp. nov. (Nostocales, Cyanobacteria) from a wet rocky wall in China. Phycologia, 58(2): 200–210, https://doi.org/10.1080/00318884.2018.1541270.

    Article  Google Scholar 

  • Cai F F, Peng X, Li R H. 2020a. Violetonostoc minutum gen. et sp. nov. (Nostocales, Cyanobacteria) from a rocky substrate in China. Algae, 35(1): 1–15, https://doi.org/10.4490/algae.2020.35.3.4.

    Article  Google Scholar 

  • Cai F F, Wang Y L, Yu G L, Wang J, Peng X, Li R H. 2020b. Proposal of Purpurea gen. nov. (Nostocales, cyanobacteria), a novel cyanobacterial genus from wet soil samples in Tibet, China. Fottea, 20(1): 86–97, https://doi.org/10.5507/fot.2019.018.

    Article  Google Scholar 

  • Choi H J, Joo J H, Kim J H, Wang P B, Ki J S, Han M S. 2018. Morphological characterization and molecular phylogenetic analysis of Dolichospermum hangangense (Nostocales, Cyanobacteria) sp. nov. from Han River, Korea. Algae, 33(2): 143–156, https://doi.org/10.4490/algae.2018.33.5.2.

    Article  Google Scholar 

  • Clarke J D. 2009. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbor Protocols, 2009(3): pdb.prot5177, https://doi.org/10.1101/pdb.prot5177.

    Article  Google Scholar 

  • Edwards U, Rogall T, Blöcker H, Emde M, Böttger E C. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17(19): 7843–7853, https://doi.org/10.1093/nar/17.19.7843.

    Article  Google Scholar 

  • Genuário D B, Corrêa D M, Komárek J, Fiore M F. 2013. Characterization of freshwater benthic biofilm-forming Hydrocoryne (Cyanobacteria) isolates from Antarctica. Journal of Phycology, 49(6): 1142–1153, https://doi.org/10.1111/jpy.12124.

    Article  Google Scholar 

  • Genuário D B, Vaz M G M V, Hentschke G S, Sant’Anna C L, Fiore M F. 2015. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_2): 663–675, https://doi.org/10.1099/ijs.0.070078-0.

    Article  Google Scholar 

  • Gkelis S, Rajaniemi P, Vardaka E, Moustaka-Gouni M, Lanaras T, Sivonen K. 2005. Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microbial Ecology, 49(1): 176–182, https://doi.org/10.1007/s00248-003-2030-7.

    Article  Google Scholar 

  • Hentschke G S, Johansen J R, Pietrasiak N, Rigonato J, Fiore M F, Sant’anna C L. 2017. Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea, 17(2): 178–190, https://doi.org/10.5507/fot.2017.002.

    Article  Google Scholar 

  • Hrouzek P, Lukešová A, Mareš J, Ventura S. 2013. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea, 13(2): 201–213, https://doi.org/10.5507/fot.2013.016.

    Article  Google Scholar 

  • Hrouzek P, Ventura S, Lukešová A, Mugnai M, Angela Turicchia S, Komárek J. 2005. Diversity of soil Nostoc strains: phylogenetic and phenotypic variability. Algological Studies, (117): 251–264, https://doi.org/10.1127/1864-1318/2005/0117-0251.

  • Iteman I, Rippka R, De Marsac N T, Herdman M. 2000. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology, 146(6): 1275–1286, https://doi.org/10.1099/00221287-146-6-1275.

    Article  Google Scholar 

  • Johansen J R, Casamatta D A. 2005. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies, (117): 71–93, https://doi.org/10.1127/1864-1318/2005/0117-0071.

  • Johansen J R, Kovacik L, Casamatta D A, Iková K F, Kaštovský J. 2011. Utility of 16S–23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia, 92(3–4): 283–302, https://doi.org/10.1127/0029-5035/2011/0092-0283.

    Article  Google Scholar 

  • Kabirnataj S, Nematzadeh G A, Talebi A F, Saraf A, Suradkar A, Tabatabaei M, Singh P. 2020. Description of novel species of Aliinostoc, Desikacharya and Desmonostoc using a polyphasic approach. International Journal of Systematic and Evolutionary Microbiology, 70(5): 3413–3426, https://doi.org/10.1099/ijsem.0.004188.

    Article  Google Scholar 

  • Kalyaanamoorthy S, Minh B Q, Wong T K F, Von Haeseler A, Jermiin L S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6): 587–589, https://doi.org/10.1038/nmeth.4285.

    Article  Google Scholar 

  • Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772–780, https://doi.org/10.1093/molbev/mst010.

    Article  Google Scholar 

  • Kim M, Oh H S, Park S C, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_2): 346–351, https://doi.org/10.1099/ijs.0.059774-0.

    Article  Google Scholar 

  • Komárek J, Kaštovský J, Mareš J, Johansen J R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4): 295–335.

    Google Scholar 

  • Komárek J. 2003. Problem of the taxonomic category “species” in cyanobacteria. Algological Studies, (109): 281–297, https://doi.org/10.1127/1864-1318/2003/0109-0281.

  • Komárek J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology, 51(3): 346–353, https://doi.org/10.1080/09670262.2016.1163738.

    Article  Google Scholar 

  • Komárek J. 2018. Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia, 811(1): 7–17, https://doi.org/10.1007/s10750-017-3379-9.

    Article  Google Scholar 

  • Komárek J. 2020. Quo vadis, taxonomy of cyanobacteria (2019). Fottea, 20(1): 104–110, https://doi.org/10.5507/fot.2019.020.

    Article  Google Scholar 

  • Kozhevnikov I V, Kozhevnikova N A. 2011. Phylogenetic and morphological evaluation of Wollea saccata (Nostocales, Cyanobacteria) isolated from the Yenissei River basin (Eastern Siberia, Russia). Fottea, 11(1): 99–106, https://doi.org/10.5507/fot.2011.010.

    Article  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547–1549, https://doi.org/10.1093/molbev/msy096.

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870–1874, https://doi.org/10.1093/molbev/msw054.

    Article  Google Scholar 

  • Lee N J, Bang S D, Kim T, Ki J S, Lee O M. 2021. Pseudoaliinostoc sejongens gen. & sp. nov. (Nostocales, Cyanobacteria) from floodplain soil of the Geum River in Korea based on polyphasic approach. Phytotaxa, 479(1): 55–70, https://doi.org/10.11646/phytotaxa.479.1.4.

    Article  Google Scholar 

  • Lukešová A, Johansen J R, Martin M P, Casamatta D A. 2009. Aulosira bohemensis sp. nov.: further phylogenetic uncertainty at the base of the Nostocales (Cyanobacteria). Phycologia, 48(2): 118–129, https://doi.org/10.2216/08-56.1.

    Article  Google Scholar 

  • Mai T, Johansen J R, Pietrasiak N, Bohunická M, Martin M P. 2018. Revision of the Synechococcales (cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa, 365(1): 1–59, https://doi.org/10.11646/phytotaxa.365.1.1.

    Article  Google Scholar 

  • Mathews Lab. 2021. RNAstructure, version 6.3. http://rna.urmc.rochester.edu/RNAstructure.html.

  • Miller M A, Schwartz T, Pickett B, He S, Klem E B, Scheuermann R H, Passarotti M, Kaufman S, O’Leary M A. 2015. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evolutionary Bioinformatics, 11: 43–48, https://doi.org/10.4137/EBO.S21501.

    Article  Google Scholar 

  • Miscoe L H, Johansen J R, Vaccarino M A, Pietrasiak N, Sherwood A R. 2016. Novel cyanobacteria from caves on Kauai, Hawaii. In: Miscoe L H ed. The Diatom Flora and Cyanobacteria from Caves on Kauai, Hawaii: Taxonomy, Distribution, New Species. Bibliotheca Phycologica, Stuttgart. p.75–152.

    Google Scholar 

  • Osorio-Santos K, Pietrasiak N, Bohunická M, Miscoe L H, Kováčik L, Martin M P, Johansen J R. 2014. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. European Journal of Phycology, 49(4): 450–470, https://doi.org/10.1080/09670262.2014.976843.

    Article  Google Scholar 

  • Papaefthimiou D, Hrouzek P, Mugnai M A, Lukesova A, Turicchia S, Rasmussen U, Ventura S. 2008. Differential patterns of evolution and distribution of the symbiotic behaviour in nostocacean cyanobacteria. International Journal of Systematic and Evolutionary Microbiology, 58(3): 553–564, https://doi.org/10.1099/ijs.0.65312-0.

    Article  Google Scholar 

  • Rajaniemi P, Hrouzek P, Kaštovská K, Willame R, Rantala A, Hoffmann L, Komárek J, Sivonen K. 2005. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology, 55(1): 11–26, https://doi.org/10.1099/ijs.0.63276-0.

    Article  Google Scholar 

  • Rambaut A. 2016. Tree figure drawing tool Version 1.4.3. Institute of Evolutionary Biology, United Kingdom, University of Edinburgh. https://vcru.wisc.edu/simonlab/bioinformatics/programs/fgtree/README.txt.

    Google Scholar 

  • Řeháková K, Johansen J R, Casamatta D A, Xuesong L, Vincent J. 2007. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia, 46: 481–502.

    Article  Google Scholar 

  • Ronquist F, Teslenko M, Van Der Mark P, Ayres D L, Darling A, Höhna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P. 2012. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539–542, https://doi.org/10.1093/sysbio/sys029.

    Article  Google Scholar 

  • Sambrook J, Russell D W. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York. p.1.84–1.87.

    Google Scholar 

  • Saraf A G, Dawda H G, Singh P. 2019. Validation of the genus Desikacharya gen. nov. (Nostocaceae, Cyanobacteria) and three included species. Notulae Algarum, (107): 1–3, figs 1–8, https://doi.org/10.1099/ijsem.0.001800.

  • Saraf A, Dawda H G, Suradkar A, Behere I, Kotulkar M, Shaikh Z M, Kumat A, Batule P, Mishra D, Singh P. 2018. Description of two new species of Aliinostoc and one new species of Desmonostoc from India based on the polyphasic approach and reclassification of Nostoc punensis to Desmonostoc punense comb. nov. FEMS Microbiology Letters, 365(24): fny272, https://doi.org/10.1093/femsle/fny272.

    Article  Google Scholar 

  • Sciuto K, Moro I. 2016. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S–23S ITS region. Molecular Phylogenetics and Evolution, 105: 15–35, https://doi.org/10.1016/j.ympev.2016.08.010.

    Article  Google Scholar 

  • Silva C S P, Genuário D B, Vaz M G M V, Fiore M F. 2014. Phylogeny of culturable cyanobacteria from Brazilian mangroves. Systematic and Applied Microbiology, 37(2): 100–112, https://doi.org/10.1016/j.syapm.2013.12.003.

    Article  Google Scholar 

  • Stackebrandt E, Ebers J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiology Today, 33: 152–155.

    Google Scholar 

  • Stackebrandt E, Goebel B M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 44(4): 846–849, https://doi.org/10.1099/00207713-44-4-846.

    Article  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology, 69(9): 5157–5169, https://doi.org/10.1128/AEM.69.9.5157-5169.2003.

    Article  Google Scholar 

  • Taton A, Grubisic S, Ertz D, Hodgson D A, Piccardi R, Biondi N, Tredici M R, Mainini M, Losi D, Marinelli F, Wilmotte A. 2006. Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology, 42(6): 1257–1270, https://doi.org/10.1111/j.1529-8817.2006.00278.x.

    Article  Google Scholar 

  • Trifinopoulos J, Nguyen L T, Von Haeseler A, Minh B Q. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1): W232–W235, https://doi.org/10.1093/nar/gkw256.

    Article  Google Scholar 

  • Turicchia S, Ventura S, Komárková J, Komárek J. 2009. Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 2. Diversity of oscillatorialean genera. Nova Hedwigia, 89(1–2): 165–200, https://doi.org/10.1127/0029-5035/2009/0089-0165.

    Article  Google Scholar 

  • Vaccarino M A, Johansen J R. 2012. Brasilonema angustatum sp. nov. (Nostocales), a new filamentous cyanobacterial species from the Hawaiian Islands. Journal of Phycology, 48(5): 1178–1186, https://doi.org/10.1111/j.1529-8817.2012.01203.x.

    Article  Google Scholar 

  • Watanabe M M, Ichimura T. 1977. Fresh-and salt-water forms of Spirulina platensis in axenic cultures. Bulletin of Japanese Society of Phycology, 25: 371–377.

    Google Scholar 

  • Zapomělová E, Mareš J, Lukešová A, Skácelová O, Řeháková K, Kust A. 2013. Extensive polyphyly of non-gasvacuolate Anabaena species (Nostocales, Cyanobacteria): a challenge for modern cyanobacterial taxonomy. In: Book of abstracts, 19th Symposium of the International Society for Cyanophyte Research, p.51, Cleveland, Ohio.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renhui Li.

Additional information

Supported by the National Natural Science Foundation of China (No. 32000166)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, F., Yu, G. & Li, R. Description of two new species of Pseudoaliinostoc (Nostocales, Cyanobacteria) from China based on the polyphasic approach. J. Ocean. Limnol. 40, 1233–1244 (2022). https://doi.org/10.1007/s00343-021-1111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1111-0

Keywords

Navigation