Skip to main content
Log in

Conjugate symmetric extension Fourier computer-generated holography with controllable reconstruction focus

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A conjugate symmetric extension Fourier computer-generated holography algorithm with controllable reconstruction focus is proposed. The real function can be directly generated by the inverse Fourier transform of the target object after conjugating symmetric extension. Subsequently, it is mapped to 0–2π linearly and superimposed with a quadratic phase term that carries the reconstruction focus to obtain a phase-only hologram that contains the amplitude, phase and reconstruction focus information of the target object. Numerical reconstruction and optical reconstruction results show that the target object can have a good reconstruction effect at a given distance. The algorithm contains only one inverse Fourier transform, which improves the efficiency of holographic coding significantly and can be used for a real-time 3D holographic display.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Wang, L. Jin, C. Rosales-Guzmán, W. Gao, Appl. Phys. B 127, 22 (2021)

    Article  ADS  Google Scholar 

  2. M. Chen, S. Huang, X. Liu, Y. Chen, W. Shao, Appl. Phys. B 125, 184 (2019)

    Article  ADS  Google Scholar 

  3. X. Fang, H. Ren, M. Gu, Nat. Photonics 14, 102–108 (2020)

    Article  ADS  Google Scholar 

  4. P. Cheng, S. Huang, C. Yan, J. Opt. Soc. Am. A 38, 1875–1883 (2021)

    Article  ADS  Google Scholar 

  5. W. Lin, Z. Zhang, PhotoniX 2(1), 1–12 (2021)

    Article  Google Scholar 

  6. G. Zhu, Z. Bai, J. Chen, C. Huang, L. Wu, C. Fu, Y. Wang, Opt. Express 29, 28452–28460 (2021)

    Article  ADS  Google Scholar 

  7. X. Wang, Y. Song, F. Pang, Y. Li, Q. Zhang, L. Zhuang, X. Guo, Y. Ju, S. Yang, X. He, Y. Yang, Opt. Laser Eng. 137, 106352 (2021)

    Article  Google Scholar 

  8. Z. Wan, Y. Shen, Z. Wang, Z. Shi, Q. Liu, X. Fu, Light Sci. Appl. 11, 1–11 (2022)

    Article  ADS  Google Scholar 

  9. S. Lin, D. Wang, Q. Wang, E. Kim, Opt. Laser Eng. 126, 105895 (2020)

    Article  Google Scholar 

  10. Y. Pang, A. Cao, J. Wang, H. Pang, Q. Deng, Opt. Laser Eng. 147, 106748 (2021)

    Article  Google Scholar 

  11. G. Krasin, M. Kovalev, N. Stsepuro, P. Ruchka, S. Odinokov, Sensors 20, 4310 (2020)

    Article  ADS  Google Scholar 

  12. D. Kong, L. Cao, G. Jin, B. Javidi, Appl. Opt. 55, 8296–8300 (2016)

    Article  ADS  Google Scholar 

  13. L. Zhang, Z. Zhang, H. Ye, Y. Kang, Z. Wang, K. Wang, D. Zhang, Appl. Phys. B 126, 136 (2020)

    ADS  Google Scholar 

  14. B. Ma, B. Yao, Z. Li, M. Lei, S. Yan, P. Gao, D. Dan, T. Ye, Appl. Phys. B 110, 531–537 (2013)

    Article  ADS  Google Scholar 

  15. H. Deng, C. Chen, M. He, J. Li, H. Zhang, Q. Wang, J. Opt. Soc. Am. A 36, 588–593 (2019)

    Article  ADS  Google Scholar 

  16. H. Yanagihara, T. Kakue, Y. Yamamoto, T. Shimobaba, T. Ito, Opt. Express 27, 15662–15678 (2019)

    Article  ADS  Google Scholar 

  17. M. Takenaka, T. Kakue, T. Shimobaba, T. Ito, IEEE Access 9, 36766–36774 (2021)

    Article  Google Scholar 

  18. Y. Zhao, C. Shi, K. Kwon, Y. Piao, M. Piao, N. Kim, Opt. Commun. 411, 166–169 (2018)

    Article  ADS  Google Scholar 

  19. Y. Zhang, F. Wang, T. Poon, S. Fan, W. Xu, Opt. Express 26, 19206–19224 (2018)

    Article  ADS  Google Scholar 

  20. Y. Zhao, L. Cao, H. Zhang, W. Tan, S. Wu, Z. Wang, Q. Yang, G. Jin, Chin. Opt. Lett. 14, 010005 (2016)

    Article  Google Scholar 

  21. C. Chang, D. Zhu, J. Li, D. Wang, J. Xia, X. Zhang, Displays 69, 102064 (2021)

    Article  Google Scholar 

  22. T. Tahara, Y. Zhang, J. Rosen, V. Anand, L. Cao, J. Wu, T. Koujin, A. Matsuda, A. Ishii, Y. Kozawa, R. Okamoto, R. Oi, T. Nobukawa, K. Choi, M. Imbe, T. Poon, Appl. Phys. B 128, 193 (2022)

    Article  ADS  Google Scholar 

  23. R.W. Gerchberg, Optik 35, 237–246 (1972)

    Google Scholar 

  24. T. Zhao, Y. Chi, Entropy 22, 1354 (2020)

    Article  ADS  Google Scholar 

  25. L. Chen, H. Zhang, Z. He, X. Wang, L. Cao, G. Jin, Appl. Sci. 10, 3652 (2020)

    Article  Google Scholar 

  26. Y. Wu, J. Wang, C. Chen, C. Liu, F. Jin, N. Chen, Opt. Express 29, 1412–1427 (2021)

    Article  ADS  Google Scholar 

  27. J. Zhang, N. Pégard, J. Zhong, H. Adesnik, L. Waller, Optica 4, 1306–1313 (2017)

    Article  ADS  Google Scholar 

  28. C. Jin, C. Liu, R. Shi, L. Kong, Opt. Express 29, 20795–20807 (2021)

    Article  ADS  Google Scholar 

  29. C.B. Burckhardt, Appl. Opt. 9, 695–700 (1970)

    Article  ADS  Google Scholar 

  30. Y. Nagahama, T. Shimobaba, T. Kakue, N. Masuda, T. Ito, Appl. Opt. 56, F61–F66 (2017)

    Article  Google Scholar 

  31. Z. He, X. Sui, H. Zhang, G. Jin, L. Cao, Appl. Opt. 60, A145–A154 (2021)

    Article  ADS  Google Scholar 

  32. X. Sui, Z. He, G. Jin, D. Chu, L. Cao, Opt. Express 29, 2597–2612 (2021)

    Article  ADS  Google Scholar 

  33. S. Huang, S. Wang, Y. Yu, Acta Phys. Sin. 58, 952–958 (2009)

    Article  Google Scholar 

  34. W. Cui, L. Gao, Opt. Lett. 42, 2475–2478 (2017)

    Article  ADS  Google Scholar 

  35. X. Deng, Opt. Commun. 349, 48–53 (2015)

    Article  ADS  Google Scholar 

  36. H. Hwang, H.T. Chang, W. Lie, Opt. Lett. 34, 3917–3919 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (62075125), Science and Technology Commission of Shanghai Municipality (20DZ2204900) and 111 Project (D20031).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Sujuan Huang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Huang, S. & Liu, X. Conjugate symmetric extension Fourier computer-generated holography with controllable reconstruction focus. Appl. Phys. B 129, 44 (2023). https://doi.org/10.1007/s00340-023-07990-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-07990-4

Navigation